/* SPDX-License-Identifier: MIT * * Copyright (C) 2017-2021 WireGuard LLC. All Rights Reserved. */ package device import ( "bytes" "container/list" "errors" "fmt" "io/ioutil" "sync" "sync/atomic" "time" "github.com/KusakabeSi/EtherGuardVPN/config" "github.com/KusakabeSi/EtherGuardVPN/conn" orderedmap "github.com/KusakabeSi/EtherGuardVPN/orderdmap" "gopkg.in/yaml.v2" ) type Peer struct { isRunning AtomicBool sync.RWMutex // Mostly protects endpoint, but is generally taken whenever we modify peer keypairs Keypairs handshake Handshake device *Device endpoint conn.Endpoint endpoint_trylist orderedmap.OrderedMap //map[string]time.Time LastPingReceived time.Time stopping sync.WaitGroup // routines pending stop ID config.Vertex AskedForNeighbor bool StaticConn bool //if true, this peer will not write to config file when roaming, and the endpoint will be reset periodically ConnURL string // These fields are accessed with atomic operations, which must be // 64-bit aligned even on 32-bit platforms. Go guarantees that an // allocated struct will be 64-bit aligned. So we place // atomically-accessed fields up front, so that they can share in // this alignment before smaller fields throw it off. stats struct { txBytes uint64 // bytes send to peer (endpoint) rxBytes uint64 // bytes received from peer lastHandshakeNano int64 // nano seconds since epoch } disableRoaming bool timers struct { retransmitHandshake *Timer sendKeepalive *Timer newHandshake *Timer zeroKeyMaterial *Timer persistentKeepalive *Timer handshakeAttempts uint32 needAnotherKeepalive AtomicBool sentLastMinuteHandshake AtomicBool } state struct { sync.Mutex // protects against concurrent Start/Stop } queue struct { staged chan *QueueOutboundElement // staged packets before a handshake is available outbound *autodrainingOutboundQueue // sequential ordering of udp transmission inbound *autodrainingInboundQueue // sequential ordering of tun writing } cookieGenerator CookieGenerator trieEntries list.List persistentKeepaliveInterval uint32 // accessed atomically } func (device *Device) NewPeer(pk NoisePublicKey, id config.Vertex) (*Peer, error) { if device.isClosed() { return nil, errors.New("device closed") } // lock resources device.staticIdentity.RLock() defer device.staticIdentity.RUnlock() device.peers.Lock() defer device.peers.Unlock() // check if over limit if len(device.peers.keyMap) >= MaxPeers { return nil, errors.New("too many peers") } // create peer if device.LogLevel.LogControl { fmt.Println("Control: Create peer with ID : " + id.ToString() + " and PubKey:" + pk.ToString()) } peer := new(Peer) peer.Lock() defer peer.Unlock() peer.cookieGenerator.Init(pk) peer.device = device peer.endpoint_trylist = orderedmap.New() peer.queue.outbound = newAutodrainingOutboundQueue(device) peer.queue.inbound = newAutodrainingInboundQueue(device) peer.queue.staged = make(chan *QueueOutboundElement, QueueStagedSize) // map public key _, ok := device.peers.keyMap[pk] if ok { return nil, errors.New("adding existing peer pubkey:" + fmt.Sprint(pk)) } _, ok = device.peers.IDMap[id] if ok { return nil, errors.New("adding existing peer id:" + fmt.Sprint(id)) } peer.ID = id // pre-compute DH handshake := &peer.handshake handshake.mutex.Lock() handshake.precomputedStaticStatic = device.staticIdentity.privateKey.sharedSecret(pk) handshake.remoteStatic = pk handshake.mutex.Unlock() // reset endpoint peer.endpoint = nil // add if id == config.SuperNodeMessage { // To communicate with supernode device.peers.SuperPeer[pk] = peer device.peers.keyMap[pk] = peer } else { // Regular peer, other edgenodes device.peers.keyMap[pk] = peer device.peers.IDMap[id] = peer } // start peer peer.timersInit() if peer.device.isUp() { peer.Start() } return peer, nil } func (peer *Peer) SendBuffer(buffer []byte) error { peer.device.net.RLock() defer peer.device.net.RUnlock() if peer.device.isClosed() { return nil } peer.RLock() defer peer.RUnlock() if peer.endpoint == nil { return errors.New("no known endpoint for peer") } err := peer.device.net.bind.Send(buffer, peer.endpoint) if err == nil { atomic.AddUint64(&peer.stats.txBytes, uint64(len(buffer))) } return err } func (peer *Peer) String() string { // The awful goo that follows is identical to: // // base64Key := base64.StdEncoding.EncodeToString(peer.handshake.remoteStatic[:]) // abbreviatedKey := base64Key[0:4] + "…" + base64Key[39:43] // return fmt.Sprintf("peer(%s)", abbreviatedKey) // // except that it is considerably more efficient. src := peer.handshake.remoteStatic b64 := func(input byte) byte { return input + 'A' + byte(((25-int(input))>>8)&6) - byte(((51-int(input))>>8)&75) - byte(((61-int(input))>>8)&15) + byte(((62-int(input))>>8)&3) } b := []byte("peer(____…____)") const first = len("peer(") const second = len("peer(____…") b[first+0] = b64((src[0] >> 2) & 63) b[first+1] = b64(((src[0] << 4) | (src[1] >> 4)) & 63) b[first+2] = b64(((src[1] << 2) | (src[2] >> 6)) & 63) b[first+3] = b64(src[2] & 63) b[second+0] = b64(src[29] & 63) b[second+1] = b64((src[30] >> 2) & 63) b[second+2] = b64(((src[30] << 4) | (src[31] >> 4)) & 63) b[second+3] = b64((src[31] << 2) & 63) return string(b) } func (peer *Peer) Start() { // should never start a peer on a closed device if peer.device.isClosed() { return } // prevent simultaneous start/stop operations peer.state.Lock() defer peer.state.Unlock() if peer.isRunning.Get() { return } device := peer.device device.log.Verbosef("%v - Starting", peer) // reset routine state peer.stopping.Wait() peer.stopping.Add(2) peer.handshake.mutex.Lock() peer.handshake.lastSentHandshake = time.Now().Add(-(RekeyTimeout + time.Second)) peer.handshake.mutex.Unlock() peer.device.queue.encryption.wg.Add(1) // keep encryption queue open for our writes peer.timersStart() device.flushInboundQueue(peer.queue.inbound) device.flushOutboundQueue(peer.queue.outbound) go peer.RoutineSequentialSender() go peer.RoutineSequentialReceiver() peer.isRunning.Set(true) } func (peer *Peer) ZeroAndFlushAll() { device := peer.device // clear key pairs keypairs := &peer.keypairs keypairs.Lock() device.DeleteKeypair(keypairs.previous) device.DeleteKeypair(keypairs.current) device.DeleteKeypair(keypairs.loadNext()) keypairs.previous = nil keypairs.current = nil keypairs.storeNext(nil) keypairs.Unlock() // clear handshake state handshake := &peer.handshake handshake.mutex.Lock() device.indexTable.Delete(handshake.localIndex) handshake.Clear() handshake.mutex.Unlock() peer.FlushStagedPackets() } func (peer *Peer) ExpireCurrentKeypairs() { handshake := &peer.handshake handshake.mutex.Lock() peer.device.indexTable.Delete(handshake.localIndex) handshake.Clear() peer.handshake.lastSentHandshake = time.Now().Add(-(RekeyTimeout + time.Second)) handshake.mutex.Unlock() keypairs := &peer.keypairs keypairs.Lock() if keypairs.current != nil { atomic.StoreUint64(&keypairs.current.sendNonce, RejectAfterMessages) } if keypairs.next != nil { next := keypairs.loadNext() atomic.StoreUint64(&next.sendNonce, RejectAfterMessages) } keypairs.Unlock() } func (peer *Peer) Stop() { peer.state.Lock() defer peer.state.Unlock() if !peer.isRunning.Swap(false) { return } peer.device.log.Verbosef("%v - Stopping", peer) peer.timersStop() // Signal that RoutineSequentialSender and RoutineSequentialReceiver should exit. peer.queue.inbound.c <- nil peer.queue.outbound.c <- nil peer.stopping.Wait() peer.device.queue.encryption.wg.Done() // no more writes to encryption queue from us peer.ZeroAndFlushAll() } func (peer *Peer) SetPSK(psk NoisePresharedKey) { peer.handshake.mutex.Lock() peer.handshake.presharedKey = psk peer.handshake.mutex.Unlock() } func (peer *Peer) SetEndpointFromPacket(endpoint conn.Endpoint) { if peer.disableRoaming { return } peer.Lock() peer.device.SaveToConfig(peer, endpoint) peer.endpoint = endpoint peer.Unlock() } func (peer *Peer) GetEndpointSrcStr() string { if peer.endpoint == nil { return "" } return peer.endpoint.SrcToString() } func (peer *Peer) GetEndpointDstStr() string { if peer.endpoint == nil { return "" } return peer.endpoint.DstToString() } func (device *Device) SaveToConfig(peer *Peer, endpoint conn.Endpoint) { if device.IsSuperNode { //Can't in super mode return } if peer.StaticConn == true { //static conn do not write new endpoint to config return } if !device.DRoute.P2P.UseP2P { //Must in p2p mode return } if peer.endpoint != nil && peer.endpoint.DstIP().Equal(endpoint.DstIP()) { //endpoint changed return } url := endpoint.DstToString() foundInFile := false pubkeystr := peer.handshake.remoteStatic.ToString() pskstr := peer.handshake.presharedKey.ToString() if bytes.Equal(peer.handshake.presharedKey[:], make([]byte, 32)) { pskstr = "" } for _, peerfile := range device.EdgeConfig.Peers { if peerfile.NodeID == peer.ID && peerfile.PubKey == pubkeystr { foundInFile = true if peerfile.Static == false { peerfile.EndPoint = url } } else if peerfile.NodeID == peer.ID || peerfile.PubKey == pubkeystr { panic("Found NodeID match " + peer.ID.ToString() + ", but PubKey Not match %s enrties in config file" + pubkeystr) } } if !foundInFile { device.EdgeConfig.Peers = append(device.EdgeConfig.Peers, config.PeerInfo{ NodeID: peer.ID, PubKey: pubkeystr, PSKey: pskstr, EndPoint: url, Static: false, }) } go device.SaveConfig() } func (device *Device) SaveConfig() { if device.DRoute.SaveNewPeers { configbytes, _ := yaml.Marshal(device.EdgeConfig) ioutil.WriteFile(device.EdgeConfigPath, configbytes, 0666) } }