/* SPDX-License-Identifier: MIT * * Copyright (C) 2017-2021 WireGuard LLC. All Rights Reserved. */ package device import ( "bytes" "encoding/binary" "errors" "fmt" "os" "strconv" "sync" "sync/atomic" "time" "github.com/KusakabeSi/EtherGuard-VPN/mtypes" "github.com/KusakabeSi/EtherGuard-VPN/path" "github.com/KusakabeSi/EtherGuard-VPN/tap" "github.com/google/gopacket" "github.com/google/gopacket/layers" "golang.org/x/crypto/chacha20poly1305" ) /* Outbound flow * * 1. TUN queue * 2. Routing (sequential) * 3. Nonce assignment (sequential) * 4. Encryption (parallel) * 5. Transmission (sequential) * * The functions in this file occur (roughly) in the order in * which the packets are processed. * * Locking, Producers and Consumers * * The order of packets (per peer) must be maintained, * but encryption of packets happen out-of-order: * * The sequential consumers will attempt to take the lock, * workers release lock when they have completed work (encryption) on the packet. * * If the element is inserted into the "encryption queue", * the content is preceded by enough "junk" to contain the transport header * (to allow the construction of transport messages in-place) */ type QueueOutboundElement struct { Type path.Usage TTL uint8 sync.Mutex buffer *[MaxMessageSize]byte // slice holding the packet data packet []byte // slice of "buffer" (always!) nonce uint64 // nonce for encryption keypair *Keypair // keypair for encryption peer *Peer // related peer } func (device *Device) NewOutboundElement() *QueueOutboundElement { elem := device.GetOutboundElement() elem.buffer = device.GetMessageBuffer() elem.Mutex = sync.Mutex{} elem.nonce = 0 // keypair and peer were cleared (if necessary) by clearPointers. return elem } // clearPointers clears elem fields that contain pointers. // This makes the garbage collector's life easier and // avoids accidentally keeping other objects around unnecessarily. // It also reduces the possible collateral damage from use-after-free bugs. func (elem *QueueOutboundElement) clearPointers() { elem.buffer = nil elem.packet = nil elem.keypair = nil elem.peer = nil } /* Queues a keepalive if no packets are queued for peer */ func (peer *Peer) SendKeepalive() { if len(peer.queue.staged) == 0 && peer.isRunning.Get() { elem := peer.device.NewOutboundElement() select { case peer.queue.staged <- elem: peer.device.log.Verbosef("%v - Sending keepalive packet", peer) default: peer.device.PutMessageBuffer(elem.buffer) peer.device.PutOutboundElement(elem) } } peer.SendStagedPackets() } func (peer *Peer) SendHandshakeInitiation(isRetry bool) error { if !isRetry { atomic.StoreUint32(&peer.timers.handshakeAttempts, 0) } peer.handshake.mutex.RLock() if time.Since(peer.handshake.lastSentHandshake) < RekeyTimeout { peer.handshake.mutex.RUnlock() return nil } peer.handshake.mutex.RUnlock() peer.handshake.mutex.Lock() if time.Since(peer.handshake.lastSentHandshake) < RekeyTimeout { peer.handshake.mutex.Unlock() return nil } peer.handshake.lastSentHandshake = time.Now() peer.handshake.mutex.Unlock() peer.device.log.Verbosef("%v - Sending handshake initiation", peer) msg, err := peer.device.CreateMessageInitiation(peer) if err != nil { peer.device.log.Errorf("%v - Failed to create initiation message: %v", peer, err) return err } var buff [MessageInitiationSize]byte writer := bytes.NewBuffer(buff[:0]) binary.Write(writer, binary.LittleEndian, msg) packet := writer.Bytes() peer.cookieGenerator.AddMacs(packet) peer.timersAnyAuthenticatedPacketTraversal() peer.timersAnyAuthenticatedPacketSent() err = peer.SendBuffer(packet) if err != nil { peer.device.log.Errorf("%v - Failed to send handshake initiation: %v", peer, err) } peer.timersHandshakeInitiated() return err } func (peer *Peer) SendHandshakeResponse() error { peer.handshake.mutex.Lock() peer.handshake.lastSentHandshake = time.Now() peer.handshake.mutex.Unlock() peer.device.log.Verbosef("%v - Sending handshake response", peer) response, err := peer.device.CreateMessageResponse(peer) if err != nil { peer.device.log.Errorf("%v - Failed to create response message: %v", peer, err) return err } var buff [MessageResponseSize]byte writer := bytes.NewBuffer(buff[:0]) binary.Write(writer, binary.LittleEndian, response) packet := writer.Bytes() peer.cookieGenerator.AddMacs(packet) err = peer.BeginSymmetricSession() if err != nil { peer.device.log.Errorf("%v - Failed to derive keypair: %v", peer, err) return err } peer.timersSessionDerived() peer.timersAnyAuthenticatedPacketTraversal() peer.timersAnyAuthenticatedPacketSent() err = peer.SendBuffer(packet) if err != nil { peer.device.log.Errorf("%v - Failed to send handshake response: %v", peer, err) } return err } func (device *Device) SendHandshakeCookie(initiatingElem *QueueHandshakeElement) error { device.log.Verbosef("Sending cookie response for denied handshake message for %v", initiatingElem.endpoint.DstToString()) sender := binary.LittleEndian.Uint32(initiatingElem.packet[4:8]) reply, err := device.cookieChecker.CreateReply(initiatingElem.packet, sender, initiatingElem.endpoint.DstToBytes()) if err != nil { device.log.Errorf("Failed to create cookie reply: %v", err) return err } var buff [MessageCookieReplySize]byte writer := bytes.NewBuffer(buff[:0]) binary.Write(writer, binary.LittleEndian, reply) device.net.bind.Send(writer.Bytes(), initiatingElem.endpoint) return nil } func (peer *Peer) keepKeyFreshSending() { keypair := peer.keypairs.Current() if keypair == nil { return } nonce := atomic.LoadUint64(&keypair.sendNonce) if nonce > RekeyAfterMessages || (keypair.isInitiator && time.Since(keypair.created) > RekeyAfterTime) { peer.SendHandshakeInitiation(false) } } /* Reads packets from the TUN and inserts * into staged queue for peer * * Obs. Single instance per TUN device */ func (device *Device) RoutineReadFromTUN() { defer func() { device.log.Verbosef("Routine: TUN reader - stopped") device.state.stopping.Done() device.queue.encryption.wg.Done() }() device.log.Verbosef("Routine: TUN reader - started") var elem *QueueOutboundElement for { if elem != nil { device.PutMessageBuffer(elem.buffer) device.PutOutboundElement(elem) } elem = device.NewOutboundElement() // read packet offset := MessageTransportHeaderSize size, err := device.tap.device.Read(elem.buffer[:], offset+path.EgHeaderLen) if err != nil { if !device.isClosed() { if !errors.Is(err, os.ErrClosed) { device.log.Errorf("Failed to read packet from TUN device: %v", err) } go device.Close() } device.PutMessageBuffer(elem.buffer) device.PutOutboundElement(elem) return } if size == 0 || (size+path.EgHeaderLen) > MaxContentSize { continue } //add custom header dst_node, src_node, ttl size += path.EgHeaderLen elem.packet = elem.buffer[offset : offset+size] EgBody, _ := path.NewEgHeader(elem.packet[0:path.EgHeaderLen], device.EdgeConfig.Interface.MTU) dst_nodeID := EgBody.GetDst() dstMacAddr := tap.GetDstMacAddr(elem.packet[path.EgHeaderLen:]) // lookup peer if tap.IsNotUnicast(dstMacAddr) { dst_nodeID = mtypes.NodeID_Broadcast } else if val, ok := device.l2fib.Load(dstMacAddr); !ok { //Lookup failed dst_nodeID = mtypes.NodeID_Broadcast } else { dst_nodeID = val.(*IdAndTime).ID } packet_len := len(elem.packet) - path.EgHeaderLen EgBody.SetSrc(device.ID) EgBody.SetDst(dst_nodeID) elem.Type = path.NormalPacket elem.TTL = device.EdgeConfig.DefaultTTL if packet_len <= 12 { if device.LogLevel.LogNormal { fmt.Println("Normal: Invalid packet: Ethernet packet too small." + " Len:" + strconv.Itoa(packet_len)) } continue } if dst_nodeID != mtypes.NodeID_Broadcast { var peer *Peer next_id := device.graph.Next(device.ID, dst_nodeID) if next_id != mtypes.NodeID_Invalid { device.peers.RLock() peer = device.peers.IDMap[next_id] device.peers.RUnlock() if peer == nil { continue } if device.LogLevel.LogNormal { packet_len := len(elem.packet) - path.EgHeaderLen fmt.Printf("Normal: Send Len:%v S:%v D:%v TTL:%v To:%v IP:%v:\n", packet_len, device.ID.ToString(), dst_nodeID.ToString(), elem.TTL, peer.ID.ToString(), peer.GetEndpointDstStr()) packet := gopacket.NewPacket(elem.packet[path.EgHeaderLen:], layers.LayerTypeEthernet, gopacket.Default) fmt.Println(packet.Dump()) } if peer.isRunning.Get() { peer.StagePacket(elem) elem = nil peer.SendStagedPackets() } } } else { device.BoardcastPacket(make(map[mtypes.Vertex]bool, 0), elem.Type, elem.TTL, elem.packet, offset) } } } func (peer *Peer) StagePacket(elem *QueueOutboundElement) { for { select { case peer.queue.staged <- elem: return default: } select { case tooOld := <-peer.queue.staged: peer.device.PutMessageBuffer(tooOld.buffer) peer.device.PutOutboundElement(tooOld) default: } } } func (peer *Peer) SendStagedPackets() { top: if len(peer.queue.staged) == 0 || !peer.device.isUp() { return } keypair := peer.keypairs.Current() if keypair == nil || atomic.LoadUint64(&keypair.sendNonce) >= RejectAfterMessages || time.Since(keypair.created) >= RejectAfterTime { peer.SendHandshakeInitiation(false) return } for { select { case elem := <-peer.queue.staged: elem.peer = peer elem.nonce = atomic.AddUint64(&keypair.sendNonce, 1) - 1 if elem.nonce >= RejectAfterMessages { atomic.StoreUint64(&keypair.sendNonce, RejectAfterMessages) peer.StagePacket(elem) // XXX: Out of order, but we can't front-load go chans goto top } elem.keypair = keypair elem.Lock() // add to parallel and sequential queue if peer.isRunning.Get() { peer.queue.outbound.c <- elem peer.device.queue.encryption.c <- elem } else { peer.device.PutMessageBuffer(elem.buffer) peer.device.PutOutboundElement(elem) } default: return } } } func (peer *Peer) FlushStagedPackets() { for { select { case elem := <-peer.queue.staged: peer.device.PutMessageBuffer(elem.buffer) peer.device.PutOutboundElement(elem) default: return } } } func calculatePaddingSize(packetSize, mtu int) int { mtu = mtu + 14 + 4 // +Ether frame size + EgHeaderLen lastUnit := packetSize if mtu == 0 { return ((lastUnit + PaddingMultiple - 1) & ^(PaddingMultiple - 1)) - lastUnit } if lastUnit > mtu { lastUnit %= mtu } paddedSize := ((lastUnit + PaddingMultiple - 1) & ^(PaddingMultiple - 1)) if paddedSize > mtu { paddedSize = mtu } return paddedSize - lastUnit } /* Encrypts the elements in the queue * and marks them for sequential consumption (by releasing the mutex) * * Obs. One instance per core */ func (device *Device) RoutineEncryption(id int) { var paddingZeros [PaddingMultiple]byte var nonce [chacha20poly1305.NonceSize]byte defer device.log.Verbosef("Routine: encryption worker %d - stopped", id) device.log.Verbosef("Routine: encryption worker %d - started", id) for elem := range device.queue.encryption.c { // populate header fields header := elem.buffer[:MessageTransportHeaderSize] fieldReceiver := header[MessageTransportOffsetReceiver:MessageTransportOffsetCounter] fieldNonce := header[MessageTransportOffsetCounter:MessageTransportHeaderSize] header[0] = uint8(elem.Type) header[1] = uint8(elem.TTL) binary.LittleEndian.PutUint32(fieldReceiver, elem.keypair.remoteIndex) binary.LittleEndian.PutUint64(fieldNonce, elem.nonce) // pad content to multiple of 16 paddingSize := calculatePaddingSize(len(elem.packet), int(atomic.LoadInt32(&device.tap.mtu))) elem.packet = append(elem.packet, paddingZeros[:paddingSize]...) // encrypt content and release to consumer binary.LittleEndian.PutUint64(nonce[4:], elem.nonce) elem.packet = elem.keypair.send.Seal( header, nonce[:], elem.packet, nil, ) elem.Unlock() } } /* Sequentially reads packets from queue and sends to endpoint * * Obs. Single instance per peer. * The routine terminates then the outbound queue is closed. */ func (peer *Peer) RoutineSequentialSender() { device := peer.device defer func() { defer device.log.Verbosef("%v - Routine: sequential sender - stopped", peer) peer.stopping.Done() }() device.log.Verbosef("%v - Routine: sequential sender - started", peer) for elem := range peer.queue.outbound.c { if elem == nil { return } elem.Lock() if !peer.isRunning.Get() { // peer has been stopped; return re-usable elems to the shared pool. // This is an optimization only. It is possible for the peer to be stopped // immediately after this check, in which case, elem will get processed. // The timers and SendBuffer code are resilient to a few stragglers. // TODO: rework peer shutdown order to ensure // that we never accidentally keep timers alive longer than necessary. device.PutMessageBuffer(elem.buffer) device.PutOutboundElement(elem) continue } peer.timersAnyAuthenticatedPacketTraversal() peer.timersAnyAuthenticatedPacketSent() // send message and return buffer to pool err := peer.SendBuffer(elem.packet) if len(elem.packet) != MessageKeepaliveSize { peer.timersDataSent() } device.PutMessageBuffer(elem.buffer) device.PutOutboundElement(elem) if err != nil { device.log.Errorf("%v - Failed to send data packet: %v", peer, err) continue } peer.keepKeyFreshSending() } }