EtherGuard-VPN/device/peer.go

684 lines
17 KiB
Go

/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2021 WireGuard LLC. All Rights Reserved.
*/
package device
import (
"bytes"
"container/list"
"errors"
"fmt"
"io/ioutil"
"net"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/KusakabeSi/EtherGuard-VPN/conn"
"github.com/KusakabeSi/EtherGuard-VPN/mtypes"
"gopkg.in/yaml.v2"
)
const AfPerferVal = 10000
type endpoint_tryitem struct {
URL string
lastTry time.Time
firstTry time.Time
}
type endpoint_trylist struct {
sync.RWMutex
timeout time.Duration
enabledAf conn.EnabledAf
peer *Peer
trymap_super map[string]*endpoint_tryitem
trymap_p2p map[string]*endpoint_tryitem
}
func NewEndpoint_trylist(peer *Peer, timeout time.Duration, enabledAf conn.EnabledAf) *endpoint_trylist {
return &endpoint_trylist{
timeout: timeout,
peer: peer,
enabledAf: enabledAf,
trymap_super: make(map[string]*endpoint_tryitem),
trymap_p2p: make(map[string]*endpoint_tryitem),
}
}
func (et *endpoint_trylist) UpdateSuper(urls mtypes.API_connurl, UseLocalIP bool, AfPerfer int) {
et.Lock()
defer et.Unlock()
newmap_super := make(map[string]*endpoint_tryitem)
if urls.IsEmpty() {
if et.peer.device.LogLevel.LogInternal {
fmt.Printf("Internal: Peer %v : Reset trylist(super) %v\n", et.peer.ID.ToString(), "nil")
}
}
for url, it := range urls.GetList(UseLocalIP) {
if url == "" {
continue
}
addr, _, err := conn.LookupIP(url, et.enabledAf, AfPerfer)
switch AfPerfer {
case 4:
if addr == "udp4" {
it = it - AfPerferVal
}
case 6:
if addr == "udp6" {
it = it - AfPerferVal
}
}
if err != nil {
if et.peer.device.LogLevel.LogInternal {
fmt.Printf("Internal: Peer %v : Update trylist(super) %v error: %v\n", et.peer.ID.ToString(), url, err)
}
continue
}
if val, ok := et.trymap_super[url]; ok {
if et.peer.device.LogLevel.LogInternal {
fmt.Printf("Internal: Peer %v : Update trylist(super) %v\n", et.peer.ID.ToString(), url)
}
newmap_super[url] = val
} else {
if et.peer.device.LogLevel.LogInternal {
fmt.Printf("Internal: Peer %v : New trylist(super) %v\n", et.peer.ID.ToString(), url)
}
newmap_super[url] = &endpoint_tryitem{
URL: url,
lastTry: time.Time{}.Add(mtypes.S2TD(AfPerferVal)).Add(mtypes.S2TD(it)),
firstTry: time.Time{},
}
}
}
et.trymap_super = newmap_super
}
func (et *endpoint_trylist) UpdateP2P(url string) {
_, _, err := conn.LookupIP(url, et.enabledAf, 0)
if err != nil {
return
}
et.Lock()
defer et.Unlock()
if _, ok := et.trymap_p2p[url]; !ok {
if et.peer.device.LogLevel.LogInternal {
fmt.Printf("Internal: Peer %v : Add trylist(p2p) %v\n", et.peer.ID.ToString(), url)
}
et.trymap_p2p[url] = &endpoint_tryitem{
URL: url,
lastTry: time.Now(),
firstTry: time.Time{},
}
}
}
func (et *endpoint_trylist) Delete(url string) {
et.Lock()
defer et.Unlock()
delete(et.trymap_super, url)
delete(et.trymap_p2p, url)
}
func (et *endpoint_trylist) GetNextTry() (bool, string) {
et.RLock()
defer et.RUnlock()
var smallest *endpoint_tryitem
FastTry := true
for _, v := range et.trymap_super {
if smallest == nil || smallest.lastTry.After(v.lastTry) {
smallest = v
}
}
for url, v := range et.trymap_p2p {
if v.firstTry.After(time.Time{}) && v.firstTry.Add(et.timeout).Before(time.Now()) {
if et.peer.device.LogLevel.LogInternal {
fmt.Printf("Internal: Peer %v : Delete trylist(p2p) %v\n", et.peer.ID.ToString(), url)
}
delete(et.trymap_p2p, url)
}
if smallest == nil || smallest.lastTry.After(v.lastTry) {
smallest = v
}
}
if smallest == nil {
return false, ""
}
smallest.lastTry = time.Now()
if !smallest.firstTry.After(time.Time{}) {
smallest.firstTry = time.Now()
}
if smallest.firstTry.Add(et.timeout).Before(time.Now()) {
FastTry = false
}
return FastTry, smallest.URL
}
type filterwindow struct {
sync.RWMutex
device *Device
size int
element []float64
value float64
}
func (f *filterwindow) Push(e float64) float64 {
f.Resize(f.device.SuperConfig.DampingFilterRadius*2 + 1)
f.Lock()
defer f.Unlock()
if f.size < 3 || e >= mtypes.Infinity {
f.value = e
return f.value
}
f.element = append(f.element, e)
if len(f.element) > f.size {
f.element = f.element[1:]
}
elemlen := len(f.element)
window := f.element
if elemlen%2 == 0 {
window = window[1:]
elemlen -= 1
}
if elemlen < 3 {
f.value = e
return f.value
}
f.value = f.filter(window, 2)
return f.value
}
func (f *filterwindow) filter(w []float64, lr int) float64 { // find the medium
elemlen := len(w)
if elemlen == 0 {
return mtypes.Infinity
}
if elemlen%2 == 0 {
switch lr {
case 1:
w = w[:len(w)-1]
case 2:
w = w[1:]
}
elemlen -= 1
}
if elemlen < 3 {
return w[0]
}
pivot := ((elemlen + 1) / 2) - 1
w2 := make([]float64, elemlen)
copy(w2, w)
sort.Float64s(w2)
return w2[pivot]
}
func (f *filterwindow) Resize(s uint64) {
size := int(s)
f.Lock()
defer f.Unlock()
if f.size == size {
return
}
f.size = size
elemlen := len(f.element)
if elemlen > f.size {
f.element = f.element[elemlen-size:]
}
}
func (f *filterwindow) GetVal() float64 {
f.RLock()
defer f.RUnlock()
return f.value
}
type Peer struct {
isRunning AtomicBool
sync.RWMutex // Mostly protects endpoint, but is generally taken whenever we modify peer
keypairs Keypairs
handshake Handshake
device *Device
endpoint conn.Endpoint
endpoint_trylist *endpoint_trylist
LastPacketReceivedAdd1Sec atomic.Value // *time.Time
SingleWayLatency filterwindow
stopping sync.WaitGroup // routines pending stop
ID mtypes.Vertex
AskedForNeighbor bool
StaticConn bool //if true, this peer will not write to config file when roaming, and the endpoint will be reset periodically
ConnURL string
ConnAF conn.EnabledAf
// These fields are accessed with atomic operations, which must be
// 64-bit aligned even on 32-bit platforms. Go guarantees that an
// allocated struct will be 64-bit aligned. So we place
// atomically-accessed fields up front, so that they can share in
// this alignment before smaller fields throw it off.
stats struct {
txBytes uint64 // bytes send to peer (endpoint)
rxBytes uint64 // bytes received from peer
lastHandshakeNano int64 // nano seconds since epoch
}
disableRoaming bool
timers struct {
retransmitHandshake *Timer
sendKeepalive *Timer
newHandshake *Timer
zeroKeyMaterial *Timer
persistentKeepalive *Timer
handshakeAttempts uint32
needAnotherKeepalive AtomicBool
sentLastMinuteHandshake AtomicBool
}
state struct {
sync.Mutex // protects against concurrent Start/Stop
}
queue struct {
staged chan *QueueOutboundElement // staged packets before a handshake is available
outbound *autodrainingOutboundQueue // sequential ordering of udp transmission
inbound *autodrainingInboundQueue // sequential ordering of tun writing
}
cookieGenerator CookieGenerator
trieEntries list.List
persistentKeepaliveInterval uint32 // accessed atomically
}
func (device *Device) NewPeer(pk NoisePublicKey, id mtypes.Vertex, isSuper bool, PersistentKeepalive uint32) (*Peer, error) {
if !isSuper {
if id < mtypes.NodeID_Special {
//pass check
} else {
return nil, errors.New(fmt.Sprint("ID ", uint32(id), " is a special NodeID"))
}
} else {
if id == mtypes.NodeID_SuperNode {
//pass check
} else {
return nil, errors.New(fmt.Sprint("ID", uint32(id), "is not a supernode NodeID"))
}
}
if device.isClosed() {
return nil, errors.New("device closed")
}
// lock resources
device.staticIdentity.RLock()
defer device.staticIdentity.RUnlock()
device.peers.Lock()
defer device.peers.Unlock()
// check if over limit
if len(device.peers.keyMap) >= MaxPeers {
return nil, errors.New("too many peers")
}
// create peer
if device.LogLevel.LogInternal {
fmt.Println("Internal: Create peer with ID : " + id.ToString() + " and PubKey:" + pk.ToString())
}
peer := new(Peer)
peer.ConnAF = conn.EnabledAf46
atomic.SwapUint32(&peer.persistentKeepaliveInterval, PersistentKeepalive)
peer.LastPacketReceivedAdd1Sec.Store(&time.Time{})
peer.Lock()
defer peer.Unlock()
peer.cookieGenerator.Init(pk)
peer.device = device
peer.endpoint_trylist = NewEndpoint_trylist(peer, mtypes.S2TD(device.EdgeConfig.DynamicRoute.PeerAliveTimeout), device.enabledAf)
peer.SingleWayLatency.device = device
peer.SingleWayLatency.Push(mtypes.Infinity)
peer.queue.outbound = newAutodrainingOutboundQueue(device)
peer.queue.inbound = newAutodrainingInboundQueue(device)
peer.queue.staged = make(chan *QueueOutboundElement, QueueStagedSize)
// map public key
oldpeer, ok := device.peers.keyMap[pk]
if ok {
if oldpeer.ID != id {
oldpeer = nil
}
return oldpeer, fmt.Errorf("adding existing peer pubkey: %v", pk.ToString())
}
_, ok = device.peers.IDMap[id]
if ok {
return nil, fmt.Errorf("adding existing peer id: %v", id)
}
peer.ID = id
// pre-compute DH
handshake := &peer.handshake
handshake.mutex.Lock()
handshake.precomputedStaticStatic = device.staticIdentity.privateKey.sharedSecret(pk)
handshake.remoteStatic = pk
handshake.mutex.Unlock()
// reset endpoint
peer.endpoint = nil
// add
if id == mtypes.NodeID_SuperNode { // To communicate with supernode
device.peers.SuperPeer[pk] = peer
device.peers.keyMap[pk] = peer
} else { // Regular peer, other edgenodes
device.peers.keyMap[pk] = peer
device.peers.IDMap[id] = peer
}
// start peer
peer.timersInit()
if peer.device.isUp() {
peer.Start()
}
return peer, nil
}
func (peer *Peer) IsPeerAlive() bool {
PeerAliveTimeout := mtypes.S2TD(peer.device.EdgeConfig.DynamicRoute.PeerAliveTimeout)
if peer.endpoint == nil {
return false
}
if peer.LastPacketReceivedAdd1Sec.Load().(*time.Time).Add(PeerAliveTimeout).Before(time.Now()) {
return false
}
return true
}
func (peer *Peer) SendBuffer(buffer []byte) error {
peer.device.net.RLock()
defer peer.device.net.RUnlock()
if peer.device.isClosed() {
return nil
}
peer.RLock()
defer peer.RUnlock()
if peer.endpoint == nil {
return errors.New("no known endpoint for peer")
}
err := peer.device.net.bind.Send(buffer, peer.endpoint)
if err == nil {
atomic.AddUint64(&peer.stats.txBytes, uint64(len(buffer)))
}
return err
}
func (peer *Peer) String() string {
// The awful goo that follows is identical to:
//
// base64Key := base64.StdEncoding.EncodeToString(peer.handshake.remoteStatic[:])
// abbreviatedKey := base64Key[0:4] + "…" + base64Key[39:43]
// return fmt.Sprintf("peer(%s)", abbreviatedKey)
//
// except that it is considerably more efficient.
src := peer.handshake.remoteStatic
b64 := func(input byte) byte {
return input + 'A' + byte(((25-int(input))>>8)&6) - byte(((51-int(input))>>8)&75) - byte(((61-int(input))>>8)&15) + byte(((62-int(input))>>8)&3)
}
b := []byte("peer(____…____)")
const first = len("peer(")
const second = len("peer(____…")
b[first+0] = b64((src[0] >> 2) & 63)
b[first+1] = b64(((src[0] << 4) | (src[1] >> 4)) & 63)
b[first+2] = b64(((src[1] << 2) | (src[2] >> 6)) & 63)
b[first+3] = b64(src[2] & 63)
b[second+0] = b64(src[29] & 63)
b[second+1] = b64((src[30] >> 2) & 63)
b[second+2] = b64(((src[30] << 4) | (src[31] >> 4)) & 63)
b[second+3] = b64((src[31] << 2) & 63)
return string(b)
}
func (peer *Peer) Start() {
// should never start a peer on a closed device
if peer.device.isClosed() {
return
}
// prevent simultaneous start/stop operations
peer.state.Lock()
defer peer.state.Unlock()
if peer.isRunning.Get() {
return
}
device := peer.device
device.log.Verbosef("%v - Starting", peer)
// reset routine state
peer.stopping.Wait()
peer.stopping.Add(2)
peer.handshake.mutex.Lock()
peer.handshake.lastSentHandshake = time.Now().Add(-(RekeyTimeout + time.Second))
peer.handshake.mutex.Unlock()
peer.device.queue.encryption.wg.Add(1) // keep encryption queue open for our writes
peer.timersStart()
device.flushInboundQueue(peer.queue.inbound)
device.flushOutboundQueue(peer.queue.outbound)
go peer.RoutineSequentialSender()
go peer.RoutineSequentialReceiver()
peer.isRunning.Set(true)
}
func (peer *Peer) ZeroAndFlushAll() {
device := peer.device
// clear key pairs
keypairs := &peer.keypairs
keypairs.Lock()
device.DeleteKeypair(keypairs.previous)
device.DeleteKeypair(keypairs.current)
device.DeleteKeypair(keypairs.loadNext())
keypairs.previous = nil
keypairs.current = nil
keypairs.storeNext(nil)
keypairs.Unlock()
// clear handshake state
handshake := &peer.handshake
handshake.mutex.Lock()
device.indexTable.Delete(handshake.localIndex)
handshake.Clear()
handshake.mutex.Unlock()
peer.FlushStagedPackets()
}
func (peer *Peer) ExpireCurrentKeypairs() {
handshake := &peer.handshake
handshake.mutex.Lock()
peer.device.indexTable.Delete(handshake.localIndex)
handshake.Clear()
peer.handshake.lastSentHandshake = time.Now().Add(-(RekeyTimeout + time.Second))
handshake.mutex.Unlock()
keypairs := &peer.keypairs
keypairs.Lock()
if keypairs.current != nil {
atomic.StoreUint64(&keypairs.current.sendNonce, RejectAfterMessages)
}
if keypairs.next != nil {
next := keypairs.loadNext()
atomic.StoreUint64(&next.sendNonce, RejectAfterMessages)
}
keypairs.Unlock()
}
func (peer *Peer) Stop() {
peer.state.Lock()
defer peer.state.Unlock()
if !peer.isRunning.Swap(false) {
return
}
peer.device.log.Verbosef("%v - Stopping", peer)
peer.timersStop()
// Signal that RoutineSequentialSender and RoutineSequentialReceiver should exit.
peer.queue.inbound.c <- nil
peer.queue.outbound.c <- nil
peer.stopping.Wait()
peer.device.queue.encryption.wg.Done() // no more writes to encryption queue from us
peer.ZeroAndFlushAll()
}
func (peer *Peer) SetPSK(psk NoisePresharedKey) {
if !peer.device.IsSuperNode && peer.ID < mtypes.NodeID_Special && peer.device.EdgeConfig.DynamicRoute.P2P.UseP2P {
peer.device.log.Verbosef("Preshared keys disabled in P2P mode.")
return
}
peer.handshake.mutex.Lock()
peer.handshake.presharedKey = psk
peer.handshake.mutex.Unlock()
}
func (peer *Peer) SetEndpointFromConnURL(connurl string, af conn.EnabledAf, af_perfer int, static bool) error {
if peer.device.LogLevel.LogInternal {
fmt.Printf("Internal: Set endpoint to %v for NodeID: %v static:%v\n", connurl, peer.ID.ToString(), static)
}
var err error
_, connIP, err := conn.LookupIP(connurl, af, af_perfer)
if err != nil {
return err
}
if peer.GetEndpointDstStr() == connIP {
//if peer.device.LogLevel.LogInternal {
// fmt.Printf("Internal: Same as original endpoint:%v, skip for NodeID:%v\n", connurl, peer.ID.ToString())
//}
return nil
}
endpoint, err := peer.device.net.bind.ParseEndpoint(connIP)
if err != nil {
return err
}
peer.StaticConn = static
peer.ConnURL = connurl
peer.ConnAF = af
peer.SetEndpointFromPacket(endpoint)
return nil
}
func (peer *Peer) SetEndpointFromPacket(endpoint conn.Endpoint) {
if peer.disableRoaming {
return
}
peer.Lock()
defer peer.Unlock()
if peer.ID == mtypes.NodeID_SuperNode {
conn, err := net.Dial("udp", endpoint.DstToString())
if err != nil {
if peer.device.LogLevel.LogControl {
fmt.Printf("Control: Set endpoint to peer %v failed: %v", peer.ID, err)
}
return
}
defer conn.Close()
if err == nil {
IP := conn.LocalAddr().(*net.UDPAddr).IP
if ip4 := IP.To4(); ip4 != nil {
peer.device.peers.LocalV4 = ip4
} else {
peer.device.peers.LocalV6 = IP
}
}
}
peer.device.SaveToConfig(peer, endpoint)
peer.endpoint = endpoint
}
func (peer *Peer) GetEndpointSrcStr() string {
peer.RLock()
defer peer.RUnlock()
if peer.endpoint == nil {
return ""
}
return peer.endpoint.SrcToString()
}
func (peer *Peer) GetEndpointDstStr() string {
peer.RLock()
defer peer.RUnlock()
if peer.endpoint == nil {
return ""
}
return peer.endpoint.DstToString()
}
func (device *Device) SaveToConfig(peer *Peer, endpoint conn.Endpoint) {
if device.IsSuperNode { //Can't use in super mode
return
}
if peer.StaticConn { //static conn do not write new endpoint to config
return
}
if !device.EdgeConfig.DynamicRoute.P2P.UseP2P { //Must in p2p mode
return
}
if peer.endpoint != nil && peer.endpoint.DstIP().Equal(endpoint.DstIP()) { //endpoint changed
return
}
url := endpoint.DstToString()
foundInFile := false
pubkeystr := peer.handshake.remoteStatic.ToString()
pskstr := peer.handshake.presharedKey.ToString()
if bytes.Equal(peer.handshake.presharedKey[:], make([]byte, 32)) {
pskstr = ""
}
for _, peerfile := range device.EdgeConfig.Peers {
if peerfile.NodeID == peer.ID && peerfile.PubKey == pubkeystr {
foundInFile = true
if !peerfile.Static {
peerfile.EndPoint = url
}
} else if peerfile.NodeID == peer.ID || peerfile.PubKey == pubkeystr {
panic("Found NodeID match " + peer.ID.ToString() + ", but PubKey Not match %s enrties in config file" + pubkeystr)
}
}
if !foundInFile {
device.EdgeConfig.Peers = append(device.EdgeConfig.Peers, mtypes.PeerInfo{
NodeID: peer.ID,
PubKey: pubkeystr,
PSKey: pskstr,
EndPoint: url,
Static: false,
})
}
go device.SaveConfig()
}
func (device *Device) SaveConfig() {
if device.EdgeConfig.DynamicRoute.SaveNewPeers {
configbytes, _ := yaml.Marshal(device.EdgeConfig)
ioutil.WriteFile(device.EdgeConfigPath, configbytes, 0644)
}
}