EtherGuard-VPN/device.go
2019-02-18 05:11:39 +01:00

394 lines
7.8 KiB
Go

/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2019 WireGuard LLC. All Rights Reserved.
*/
package main
import (
"golang.zx2c4.com/wireguard/ratelimiter"
"golang.zx2c4.com/wireguard/tun"
"runtime"
"sync"
"sync/atomic"
"time"
)
const (
DeviceRoutineNumberPerCPU = 3
DeviceRoutineNumberAdditional = 2
)
type Device struct {
isUp AtomicBool // device is (going) up
isClosed AtomicBool // device is closed? (acting as guard)
log *Logger
// synchronized resources (locks acquired in order)
state struct {
starting sync.WaitGroup
stopping sync.WaitGroup
sync.Mutex
changing AtomicBool
current bool
}
net struct {
starting sync.WaitGroup
stopping sync.WaitGroup
sync.RWMutex
bind Bind // bind interface
port uint16 // listening port
fwmark uint32 // mark value (0 = disabled)
}
staticIdentity struct {
sync.RWMutex
privateKey NoisePrivateKey
publicKey NoisePublicKey
}
peers struct {
sync.RWMutex
keyMap map[NoisePublicKey]*Peer
}
// unprotected / "self-synchronising resources"
allowedips AllowedIPs
indexTable IndexTable
cookieChecker CookieChecker
rate struct {
underLoadUntil atomic.Value
limiter ratelimiter.Ratelimiter
}
pool struct {
messageBufferPool *sync.Pool
messageBufferReuseChan chan *[MaxMessageSize]byte
inboundElementPool *sync.Pool
inboundElementReuseChan chan *QueueInboundElement
outboundElementPool *sync.Pool
outboundElementReuseChan chan *QueueOutboundElement
}
queue struct {
encryption chan *QueueOutboundElement
decryption chan *QueueInboundElement
handshake chan QueueHandshakeElement
}
signals struct {
stop chan struct{}
}
tun struct {
device tun.TUNDevice
mtu int32
}
}
/* Converts the peer into a "zombie", which remains in the peer map,
* but processes no packets and does not exists in the routing table.
*
* Must hold device.peers.Mutex
*/
func unsafeRemovePeer(device *Device, peer *Peer, key NoisePublicKey) {
// stop routing and processing of packets
device.allowedips.RemoveByPeer(peer)
peer.Stop()
// remove from peer map
delete(device.peers.keyMap, key)
}
func deviceUpdateState(device *Device) {
// check if state already being updated (guard)
if device.state.changing.Swap(true) {
return
}
// compare to current state of device
device.state.Lock()
newIsUp := device.isUp.Get()
if newIsUp == device.state.current {
device.state.changing.Set(false)
device.state.Unlock()
return
}
// change state of device
switch newIsUp {
case true:
if err := device.BindUpdate(); err != nil {
device.isUp.Set(false)
break
}
device.peers.RLock()
for _, peer := range device.peers.keyMap {
peer.Start()
}
device.peers.RUnlock()
case false:
device.BindClose()
device.peers.RLock()
for _, peer := range device.peers.keyMap {
peer.Stop()
}
device.peers.RUnlock()
}
// update state variables
device.state.current = newIsUp
device.state.changing.Set(false)
device.state.Unlock()
// check for state change in the mean time
deviceUpdateState(device)
}
func (device *Device) Up() {
// closed device cannot be brought up
if device.isClosed.Get() {
return
}
device.isUp.Set(true)
deviceUpdateState(device)
}
func (device *Device) Down() {
device.isUp.Set(false)
deviceUpdateState(device)
}
func (device *Device) IsUnderLoad() bool {
// check if currently under load
now := time.Now()
underLoad := len(device.queue.handshake) >= UnderLoadQueueSize
if underLoad {
device.rate.underLoadUntil.Store(now.Add(UnderLoadAfterTime))
return true
}
// check if recently under load
until := device.rate.underLoadUntil.Load().(time.Time)
return until.After(now)
}
func (device *Device) SetPrivateKey(sk NoisePrivateKey) error {
// lock required resources
device.staticIdentity.Lock()
defer device.staticIdentity.Unlock()
device.peers.Lock()
defer device.peers.Unlock()
for _, peer := range device.peers.keyMap {
peer.handshake.mutex.RLock()
defer peer.handshake.mutex.RUnlock()
}
// remove peers with matching public keys
publicKey := sk.publicKey()
for key, peer := range device.peers.keyMap {
if peer.handshake.remoteStatic.Equals(publicKey) {
unsafeRemovePeer(device, peer, key)
}
}
// update key material
device.staticIdentity.privateKey = sk
device.staticIdentity.publicKey = publicKey
device.cookieChecker.Init(publicKey)
// do static-static DH pre-computations
rmKey := device.staticIdentity.privateKey.IsZero()
for key, peer := range device.peers.keyMap {
handshake := &peer.handshake
if rmKey {
handshake.precomputedStaticStatic = [NoisePublicKeySize]byte{}
} else {
handshake.precomputedStaticStatic = device.staticIdentity.privateKey.sharedSecret(handshake.remoteStatic)
}
if isZero(handshake.precomputedStaticStatic[:]) {
unsafeRemovePeer(device, peer, key)
}
}
return nil
}
func NewDevice(tunDevice tun.TUNDevice, logger *Logger) *Device {
device := new(Device)
device.isUp.Set(false)
device.isClosed.Set(false)
device.log = logger
device.tun.device = tunDevice
mtu, err := device.tun.device.MTU()
if err != nil {
logger.Error.Println("Trouble determining MTU, assuming default:", err)
mtu = DefaultMTU
}
device.tun.mtu = int32(mtu)
device.peers.keyMap = make(map[NoisePublicKey]*Peer)
device.rate.limiter.Init()
device.rate.underLoadUntil.Store(time.Time{})
device.indexTable.Init()
device.allowedips.Reset()
device.PopulatePools()
// create queues
device.queue.handshake = make(chan QueueHandshakeElement, QueueHandshakeSize)
device.queue.encryption = make(chan *QueueOutboundElement, QueueOutboundSize)
device.queue.decryption = make(chan *QueueInboundElement, QueueInboundSize)
// prepare signals
device.signals.stop = make(chan struct{})
// prepare net
device.net.port = 0
device.net.bind = nil
// start workers
cpus := runtime.NumCPU()
device.state.starting.Wait()
device.state.stopping.Wait()
device.state.stopping.Add(DeviceRoutineNumberPerCPU*cpus + DeviceRoutineNumberAdditional)
device.state.starting.Add(DeviceRoutineNumberPerCPU*cpus + DeviceRoutineNumberAdditional)
for i := 0; i < cpus; i += 1 {
go device.RoutineEncryption()
go device.RoutineDecryption()
go device.RoutineHandshake()
}
go device.RoutineReadFromTUN()
go device.RoutineTUNEventReader()
device.state.starting.Wait()
return device
}
func (device *Device) LookupPeer(pk NoisePublicKey) *Peer {
device.peers.RLock()
defer device.peers.RUnlock()
return device.peers.keyMap[pk]
}
func (device *Device) RemovePeer(key NoisePublicKey) {
device.peers.Lock()
defer device.peers.Unlock()
// stop peer and remove from routing
peer, ok := device.peers.keyMap[key]
if ok {
unsafeRemovePeer(device, peer, key)
}
}
func (device *Device) RemoveAllPeers() {
device.peers.Lock()
defer device.peers.Unlock()
for key, peer := range device.peers.keyMap {
unsafeRemovePeer(device, peer, key)
}
device.peers.keyMap = make(map[NoisePublicKey]*Peer)
}
func (device *Device) FlushPacketQueues() {
for {
select {
case elem, ok := <-device.queue.decryption:
if ok {
elem.Drop()
}
case elem, ok := <-device.queue.encryption:
if ok {
elem.Drop()
}
case <-device.queue.handshake:
default:
return
}
}
}
func (device *Device) Close() {
if device.isClosed.Swap(true) {
return
}
device.state.starting.Wait()
device.log.Info.Println("Device closing")
device.state.changing.Set(true)
device.state.Lock()
defer device.state.Unlock()
device.tun.device.Close()
device.BindClose()
device.isUp.Set(false)
close(device.signals.stop)
device.RemoveAllPeers()
device.state.stopping.Wait()
device.FlushPacketQueues()
device.rate.limiter.Close()
device.state.changing.Set(false)
device.log.Info.Println("Interface closed")
}
func (device *Device) Wait() chan struct{} {
return device.signals.stop
}