KasmVNC/common/rfb/Cursor.cxx
2020-09-20 12:16:44 +00:00

323 lines
8.7 KiB
C++

/* Copyright (C) 2002-2005 RealVNC Ltd. All Rights Reserved.
* Copyright 2014-2017 Pierre Ossman for Cendio AB
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
* USA.
*/
#include <assert.h>
#include <string.h>
#include <rfb/Cursor.h>
#include <rfb/LogWriter.h>
#include <rfb/Exception.h>
using namespace rfb;
static LogWriter vlog("Cursor");
Cursor::Cursor(int width, int height, const Point& hotspot,
const rdr::U8* data) :
width_(width), height_(height), hotspot_(hotspot)
{
this->data = new rdr::U8[width_*height_*4];
memcpy(this->data, data, width_*height_*4);
}
Cursor::Cursor(const Cursor& other) :
width_(other.width_), height_(other.height_),
hotspot_(other.hotspot_)
{
data = new rdr::U8[width_*height_*4];
memcpy(data, other.data, width_*height_*4);
}
Cursor::~Cursor()
{
delete [] data;
}
static unsigned short pow223[] = { 0, 30, 143, 355, 676, 1113, 1673,
2361, 3181, 4139, 5237, 6479, 7869,
9409, 11103, 12952, 14961, 17130,
19462, 21960, 24626, 27461, 30467,
33647, 37003, 40535, 44245, 48136,
52209, 56466, 60907, 65535 };
static unsigned short ipow(unsigned short val, unsigned short lut[])
{
int idx = val >> (16-5);
int a, b;
if (val < 0x8000) {
a = lut[idx];
b = lut[idx+1];
} else {
a = lut[idx-1];
b = lut[idx];
}
return (val & 0x7ff) * (b-a) / 0x7ff + a;
}
static unsigned short srgb_to_lin(unsigned char srgb)
{
return ipow((unsigned)srgb * 65535 / 255, pow223);
}
// Floyd-Steinberg dithering
static void dither(int width, int height, int* data)
{
for (int y = 0; y < height; y++) {
for (int x_ = 0; x_ < width; x_++) {
int x = (y & 1) ? (width - x_ - 1) : x_;
int error;
if (data[x] > 32767) {
error = data[x] - 65535;
data[x] = 65535;
} else {
error = data[x] - 0;
data[x] = 0;
}
if (y & 1) {
if (x > 0) {
data[x - 1] += error * 7 / 16;
}
if ((y + 1) < height) {
if (x > 0)
data[x - 1 + width] += error * 3 / 16;
data[x + width] += error * 5 / 16;
if ((x + 1) < width)
data[x + 1] += error * 1 / 16;
}
} else {
if ((x + 1) < width) {
data[x + 1] += error * 7 / 16;
}
if ((y + 1) < height) {
if ((x + 1) < width)
data[x + 1 + width] += error * 3 / 16;
data[x + width] += error * 5 / 16;
if (x > 0)
data[x - 1] += error * 1 / 16;
}
}
}
data += width;
}
}
rdr::U8* Cursor::getBitmap() const
{
// First step is converting to luminance
int luminance[width()*height()];
int *lum_ptr = luminance;
const rdr::U8 *data_ptr = data;
for (int y = 0; y < height(); y++) {
for (int x = 0; x < width(); x++) {
// Use BT.709 coefficients for grayscale
*lum_ptr = 0;
*lum_ptr += (int)srgb_to_lin(data_ptr[0]) * 6947; // 0.2126
*lum_ptr += (int)srgb_to_lin(data_ptr[1]) * 23436; // 0.7152
*lum_ptr += (int)srgb_to_lin(data_ptr[2]) * 2366; // 0.0722
*lum_ptr /= 32768;
lum_ptr++;
data_ptr += 4;
}
}
// Then diterhing
dither(width(), height(), luminance);
// Then conversion to a bit mask
rdr::U8Array source((width()+7)/8*height());
memset(source.buf, 0, (width()+7)/8*height());
int maskBytesPerRow = (width() + 7) / 8;
lum_ptr = luminance;
data_ptr = data;
for (int y = 0; y < height(); y++) {
for (int x = 0; x < width(); x++) {
int byte = y * maskBytesPerRow + x / 8;
int bit = 7 - x % 8;
if (*lum_ptr > 32767)
source.buf[byte] |= (1 << bit);
lum_ptr++;
data_ptr += 4;
}
}
return source.takeBuf();
}
rdr::U8* Cursor::getMask() const
{
// First step is converting to integer array
int alpha[width()*height()];
int *alpha_ptr = alpha;
const rdr::U8 *data_ptr = data;
for (int y = 0; y < height(); y++) {
for (int x = 0; x < width(); x++) {
*alpha_ptr = (int)data_ptr[3] * 65535 / 255;
alpha_ptr++;
data_ptr += 4;
}
}
// Then diterhing
dither(width(), height(), alpha);
// Then conversion to a bit mask
rdr::U8Array mask((width()+7)/8*height());
memset(mask.buf, 0, (width()+7)/8*height());
int maskBytesPerRow = (width() + 7) / 8;
alpha_ptr = alpha;
data_ptr = data;
for (int y = 0; y < height(); y++) {
for (int x = 0; x < width(); x++) {
int byte = y * maskBytesPerRow + x / 8;
int bit = 7 - x % 8;
if (*alpha_ptr > 32767)
mask.buf[byte] |= (1 << bit);
alpha_ptr++;
data_ptr += 4;
}
}
return mask.takeBuf();
}
// crop() determines the "busy" rectangle for the cursor - the minimum bounding
// rectangle containing actual pixels. This isn't the most efficient algorithm
// but it's short. For sanity, we make sure that the busy rectangle always
// includes the hotspot (the hotspot is unsigned on the wire so otherwise it
// would cause problems if it was above or left of the actual pixels)
void Cursor::crop()
{
Rect busy = Rect(0, 0, width_, height_);
busy = busy.intersect(Rect(hotspot_.x, hotspot_.y,
hotspot_.x+1, hotspot_.y+1));
int x, y;
rdr::U8 *data_ptr = data;
for (y = 0; y < height(); y++) {
for (x = 0; x < width(); x++) {
if (data_ptr[3] > 0) {
if (x < busy.tl.x) busy.tl.x = x;
if (x+1 > busy.br.x) busy.br.x = x+1;
if (y < busy.tl.y) busy.tl.y = y;
if (y+1 > busy.br.y) busy.br.y = y+1;
}
data_ptr += 4;
}
}
if (width() == busy.width() && height() == busy.height()) return;
// Copy the pixel data
int newDataLen = busy.area() * 4;
rdr::U8* newData = new rdr::U8[newDataLen];
data_ptr = newData;
for (y = busy.tl.y; y < busy.br.y; y++) {
memcpy(data_ptr, data + y*width()*4 + busy.tl.x*4, busy.width()*4);
data_ptr += busy.width()*4;
}
// Set the size and data to the new, cropped cursor.
width_ = busy.width();
height_ = busy.height();
hotspot_ = hotspot_.subtract(busy.tl);
delete [] data;
data = newData;
}
RenderedCursor::RenderedCursor()
{
}
const rdr::U8* RenderedCursor::getBuffer(const Rect& _r, int* stride) const
{
Rect r;
r = _r.translate(offset.negate());
if (!r.enclosed_by(buffer.getRect()))
throw Exception("RenderedCursor: Invalid area requested");
return buffer.getBuffer(r, stride);
}
void RenderedCursor::update(PixelBuffer* framebuffer,
Cursor* cursor, const Point& pos)
{
Point rawOffset, diff;
Rect clippedRect;
const rdr::U8* data;
int stride;
assert(framebuffer);
assert(cursor);
format = framebuffer->getPF();
width_ = framebuffer->width();
height_ = framebuffer->height();
rawOffset = pos.subtract(cursor->hotspot());
clippedRect = Rect(0, 0, cursor->width(), cursor->height())
.translate(rawOffset)
.intersect(framebuffer->getRect());
offset = clippedRect.tl;
buffer.setPF(format);
buffer.setSize(clippedRect.width(), clippedRect.height());
// Bail out early to avoid pestering the framebuffer with
// bogus coordinates
if (clippedRect.area() == 0)
return;
data = framebuffer->getBuffer(buffer.getRect(offset), &stride);
buffer.imageRect(buffer.getRect(), data, stride);
diff = offset.subtract(rawOffset);
for (int y = 0;y < buffer.height();y++) {
for (int x = 0;x < buffer.width();x++) {
size_t idx;
rdr::U8 bg[4], fg[4];
rdr::U8 rgb[3];
idx = (y+diff.y)*cursor->width() + (x+diff.x);
memcpy(fg, cursor->getBuffer() + idx*4, 4);
if (fg[3] == 0x00)
continue;
else if (fg[3] == 0xff) {
memcpy(rgb, fg, 3);
} else {
buffer.getImage(bg, Rect(x, y, x+1, y+1));
format.rgbFromBuffer(rgb, bg, 1);
// FIXME: Gamma aware blending
for (int i = 0;i < 3;i++) {
rgb[i] = (unsigned)rgb[i]*(255-fg[3])/255 +
(unsigned)fg[i]*fg[3]/255;
}
}
format.bufferFromRGB(bg, rgb, 1);
buffer.imageRect(Rect(x, y, x+1, y+1), bg);
}
}
}