#version 410 core uniform float fGlobalTime; // in seconds uniform vec2 v2Resolution; // viewport resolution (in pixels) uniform sampler1D texFFT; // towards 0.0 is bass / lower freq, towards 1.0 is higher / treble freq uniform sampler1D texFFTSmoothed; // this one has longer falloff and less harsh transients uniform sampler1D texFFTIntegrated; // this is continually increasing uniform sampler2D texChecker; uniform sampler2D texNoise; uniform sampler2D texTex1; uniform sampler2D texTex2; uniform sampler2D texTex3; uniform sampler2D texTex4; layout(location = 0) out vec4 out_color; // out_color must be written in order to see anything float hash(vec2 uv) { return fract(sin(dot(uv, vec2(12.9898, 78.5354))) * 43758.5354); } vec2 rotate(vec2 uv, float angle) { float c = cos(angle); float s = sin(angle); return mat2(c, s, -s, c) * uv; } float vmax(vec3 v) { return max(max(v.x, v.y), v.z); } float box(vec3 pos, vec3 size) { vec3 diff = abs(pos) - size; return length(max(diff, 0.0)) + vmax(min(diff, 0.0)); } float map(vec3 pos) { //return 5.0 - length(pos); return max(max(-box(pos, vec3(3.0)), -box(pos, vec3(4.0, 1.0 + sin(fGlobalTime) + 1.0, 3.0))), -box(pos, vec3(2.0, sin(fGlobalTime) + 1.0, 4.0))); } bool traceRay(inout vec3 pos, vec3 dir) { for (int i = 0; i < 64; i++) { float d = map(pos); if (d < 0.001) return true; pos += dir * d; } return false; } vec3 computeNormal(vec3 pos) { vec2 e = vec2(0.01, 0.0); return normalize(vec3( map(pos + e.xyy) - map(pos - e.xyy), map(pos + e.yxy) - map(pos - e.yxy), map(pos + e.yyx) - map(pos - e.yyx) )); } vec3 computeEmissive(vec3 pos) { return step(3.9, pos.x) * vec3(1.0, 0.4, 0.0) * 4.0 + step(pos.x, -3.9) * vec3(0.6, 0.8, 0.9) * 4.0; } vec3 computeAlbedo(vec3 pos) { return vec3(0.8); } vec3 cosineSampleHemisphere(vec2 rng) { float radius = sqrt(rng.x); float angle = 2.0 * 3.1415926535 * rng.y; return vec3(radius * cos(angle), radius * sin(angle), sqrt(1.0 - rng.x)); } vec3 samplePath(vec2 rng, vec3 pos, vec3 dir) { vec3 radiance = vec3(0.0); vec3 pathTransmittance = vec3(1.0); for (int i = 0; i < 4; i++) { if (!traceRay(pos, dir)) break; vec3 normal = computeNormal(pos); vec3 emissive = computeEmissive(pos); vec3 albedo = computeAlbedo(pos); radiance += pathTransmittance * emissive; pathTransmittance *= albedo; vec2 off = vec2(float(i)); dir = cosineSampleHemisphere(vec2(hash(rng + off), hash(rng + off + 1.0))); if (dot(dir, normal) < 0.0) dir = -dir; pos += dir * 0.2; } return radiance; } void main(void) { vec2 uv = vec2(gl_FragCoord.x / v2Resolution.x, gl_FragCoord.y / v2Resolution.y); uv -= 0.5; uv /= vec2(v2Resolution.y / v2Resolution.x, 1); vec3 pos = vec3(0.0, 0.0, 0.0); vec3 dir = normalize(vec3(uv, 0.4)); dir.xy = rotate(dir.xy, fGlobalTime * 0.4); dir.xz = rotate(dir.xz, fGlobalTime * 0.3); vec3 radiance = vec3(0.0); for (int i = 0; i < 4; i++) { vec2 rng = vec2(hash(uv), hash(uv + 1.0)) + float(i); radiance += samplePath(rng, pos, dir); } radiance /= 4.0; vec3 color = radiance; color /= (color + 1.0); color = pow(color, vec3(1.0 / 2.2)); out_color = vec4(color, 0.0); }