#version 410 core uniform float fGlobalTime; // in seconds uniform vec2 v2Resolution; // viewport resolution (in pixels) uniform sampler1D texFFT; // towards 0.0 is bass / lower freq, towards 1.0 is higher / treble freq uniform sampler1D texFFTSmoothed; // this one has longer falloff and less harsh transients uniform sampler1D texFFTIntegrated; // this is continually increasing uniform sampler2D cookie; uniform sampler2D texChecker; uniform sampler2D texNoise; uniform sampler2D texTex1; uniform sampler2D texTex2; uniform sampler2D texTex3; uniform sampler2D texTex4; layout(location = 0) out vec4 out_color; // out_color must be written in order to see anything #define time fGlobalTime #define repeat(p,r) (mod(p,r)-r/2.) mat2 rot (float a) { float c=cos(a),s=sin(a); return mat2(c,-s,s,c); } vec3 lookat (vec3 eye, vec3 at, vec2 uv, float fov) { vec3 forward = normalize(at-eye); vec3 right = normalize(cross(forward, vec3(0,1,0))); vec3 up = normalize(cross(right, forward)); return normalize(forward * fov + right * uv.x + up * uv.y); } float map (vec3 pos) { vec3 p0 = pos; float cell = 6.; float iz = floor(pos.z/cell); //pos.z = repeat(pos.z + time, cell); //pos.xz *= rot(time); //pos.xy *= rot(time); float scene = 1.0; float range = 2.0;// + 1.0 * sin(time); float a = 1.0; float falloff = 1.2; const float count = 7.; for (float index = count; index > 0.; --index) { pos.xz *= rot(time*.05/a); //pos.yz *= rot(sin(time)*0.2); pos = abs(pos)-range*a; //scene = min(scene, length(pos)-0.5*a); scene = min(scene, max(pos.x,max(pos.y,pos.z))); a /= falloff; } scene = max(-scene,0.); //pos = repeat(pos, .1); //scene = max(scene, -length(pos.xy)+.05); //scene = max(scene, -length(p0.xy)+1.0); pos = p0; //pos.z = repeat(pos.z + time, cell); a = 1.0; float shape = 1.; for (float index = 4.; index > 0.; --index) { pos.xz *= rot(time*.2); pos.yz *= rot(time*2.); pos.xz = abs(pos.xz)-.3*a; shape = min(shape, length(pos.xy)-0.2*a); a /= falloff; } //shape = max(shape, length(p0)-.5); //scene = min(scene, shape); //scene = max(scene, length(p0)-2.); return scene; } vec3 getNormal (vec3 p) { vec2 e = vec2(0.001,0); return normalize(vec3(map(p+e.xyy)-map(p-e.xyy), map(p+e.yxy)-map(p-e.yxy), map(p+e.yyx)-map(p-e.yyx))); } void main(void) { vec2 uv = vec2(gl_FragCoord.x / v2Resolution.x, gl_FragCoord.y / v2Resolution.y); uv -= 0.5; uv /= vec2(v2Resolution.y / v2Resolution.x, 1); vec3 eye = vec3(0,0.,-2); vec3 ray = lookat(eye, vec3(0.,sin(time*.2)*.5,0), uv, .5); float total = 0.0; float shade = 0.0; const float count = 100.; for (float index = count; index > 0.; --index) { float dist = map(eye+ray*total); if (dist < 0.001) { shade = index/count; break; } dist *= .9; total += dist; } vec3 color = vec3(shade); vec3 normal = getNormal(eye+ray*total); color = vec3(.3)*clamp(dot(normal, normalize(vec3(0,1,-1))),0.,1.); color += vec3(.9)*pow(clamp(dot(normal, -ray),0.,1.), 8.); color *= shade; out_color = vec4(color,1); }