Files
Live-Coding-Sources/2019-10-26/03-anat.glsl
2019-10-28 08:30:31 +01:00

126 lines
3.1 KiB
GLSL

#version 410 core
uniform float fGlobalTime; // in seconds
uniform vec2 v2Resolution; // viewport resolution (in pixels)
uniform sampler1D texFFT; // towards 0.0 is bass / lower freq, towards 1.0 is higher / treble freq
uniform sampler1D texFFTSmoothed; // this one has longer falloff and less harsh transients
uniform sampler1D texFFTIntegrated; // this is continually increasing
uniform sampler2D texChecker;
uniform sampler2D texNoise;
uniform sampler2D texTex1;
uniform sampler2D texTex2;
uniform sampler2D texTex3;
uniform sampler2D texTex4;
layout(location = 0) out vec4 out_color; // out_color must be written in order to see anything
vec4 plas( vec2 v, float time )
{
float c = 0.5 + sin( v.x * 10.0 ) + cos( sin( time + v.y ) * 20.0 );
return vec4( sin(c * 0.2 + cos(time)), c * 0.15, cos( c * 0.1 + time / .4 ) * .25, 1.0 );
}
#define saturate(x) clamp(x, 0., 1.)
float fbm(vec2 p) {
float d = texture(texNoise,p).r * .5;
d += texture(texNoise,p*2.).r * .25;
return d;
}
float water(vec3 p) {
return p.y + texture(texNoise, p.xz*.1+vec2(0.,fGlobalTime*.1)).r*.2+ texture(texNoise, p.xz*.1+vec2(0.,-fGlobalTime*.01)).r*.125 +1.5;
}
float map(vec3 p) {
float d = -(length(p.xy)-2.);
d = max(d, p.y-1.);
p.z = mod(p.z, 20.)-10.;
d = min(d, length(p.yz+vec2(-1.5+sin(p.x*.5+5.),0.))-2.);
d += fbm(p.xz*.1)*3.;
d = min(d, water(p));
return d;
}
vec3 raymarch(vec3 ro, vec3 rd) {
vec3 p = ro;
for(int i=0; i<32; i++ ) {
p += rd * map(p)*1.3;
}
return p;
}
vec3 ld = normalize(vec3(cos(fGlobalTime),.4,1.));
vec3 sky(vec3 rd) {
vec3 c = pow( vec3(.3,.5,1.), vec3(rd.y*2.));
c += vec3(1.,.7,.3) / (1.+length(rd-ld)*200.)*20.;
return c;
}
vec3 normal(vec3 p) {
float d = map(p);
vec2 eps = vec2(0.01, 0.);
return normalize(vec3(d-map(p-eps.xyy),d-map(p-eps.yxy),d-map(p-eps.yyx)));
}
float shadow(vec3 ro, vec3 ld) {
vec3 p = ro;
for(int i=0; i<8; i++) {
p += map(p) * ld;
}
return step(.5, length(p-ro));
}
mat2 rot(float v) {
float a = cos(v);
float b = sin(v);
return mat2(a,b,-b,a);
}
float rand(float v) {
return fract(sin(v)*42358.);
}
vec3 shade(vec3 ro, vec3 rd, vec3 p, vec3 n) {
vec3 col = vec3(0);
float shad = shadow(p, ld);
col += vec3(1.,.7,.3) * max(dot(n,ld), 0.)*.2 * shad;
col += vec3(.7,.3,1.) *3.* saturate(rand(floor(p.z)+floor(fGlobalTime*3.))*9.-8.);
col = mix(col, sky(rd), saturate( length(p-ro) * .01));
return col;
}
void main(void)
{
vec2 uv = vec2(gl_FragCoord.x / v2Resolution.x, gl_FragCoord.y / v2Resolution.y);
uv -= 0.5;
uv /= vec2(v2Resolution.y / v2Resolution.x, 1);
vec3 ro = vec3(0.,-1.,fGlobalTime*3.);
vec3 rd = normalize(vec3(uv, 1.));
vec3 rdd = rd;
rd.xy = rot(fGlobalTime*.1) * rd.xy;
rd.yz = rot(fGlobalTime*.05) * rd.yz;
rd = -abs(rd);
rd.xy = rot(fGlobalTime*.05) * rd.xy;
rd = -abs(rd);
rd = mix(rd, rdd, cos(fGlobalTime*.21)*.3+.7);
vec3 p = raymarch(ro,rd);
vec3 n = normal(p);
vec3 col = shade(ro,rd, p, n);
if(water(p)- map(p) < 0.01) {
rd = reflect(rd,n);
p = raymarch(p+rd*.1,rd);
col = vec3(.1,.7,1.) * shade(ro,rd,p,n);
}
col = pow(col, vec3(.4545));
out_color = vec4(col, 1.);
}