mirror of
https://github.com/thorstenMueller/Thorsten-Voice.git
synced 2024-11-21 23:43:12 +01:00
Added two scripts for dataset analysis/cleaning.
This commit is contained in:
parent
2daabae53e
commit
33c030f844
37
helperScripts/getDatasetSpeechRate.py
Normal file
37
helperScripts/getDatasetSpeechRate.py
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
# This script gets speech rate per audio recording from a voice dataset (ljspeech file and directory structure)
|
||||||
|
# Writte by Thorsten Müller (deep-learning-german@gmx.net) and provided without any warranty.
|
||||||
|
# https://github.com/thorstenMueller/deep-learning-german-tts/
|
||||||
|
# https://twitter.com/ThorstenVoice
|
||||||
|
|
||||||
|
# Changelog:
|
||||||
|
# v0.1 - 26.09.2021 - Initial version
|
||||||
|
|
||||||
|
import os
|
||||||
|
import librosa
|
||||||
|
import csv
|
||||||
|
|
||||||
|
dataset_dir = "/Users/thorsten/Downloads/thorsten-export-20210909/" # Directory where metadata.csv is in
|
||||||
|
out_csv_file = os.path.join(dataset_dir,"speech_rate_report.csv")
|
||||||
|
decimal_use_comma = True # False: Splitting decimal value with a dot (.); True: Comma (,)
|
||||||
|
|
||||||
|
out_csv = open(out_csv_file,"w")
|
||||||
|
out_csv.write("filename;audiolength_sec;number_chars;chars_per_sec;remove_from_dataset\n")
|
||||||
|
|
||||||
|
# Open metadata.csv file
|
||||||
|
with open(os.path.join(dataset_dir,"metadata.csv")) as csvfile:
|
||||||
|
reader = csv.reader(csvfile, delimiter='|')
|
||||||
|
for row in reader:
|
||||||
|
wav_file = os.path.join(dataset_dir,"wavs",row[0] + ".wav")
|
||||||
|
|
||||||
|
# Gather values for report.csv output
|
||||||
|
phrase_len = len(row[1]) - 1 # Do not count punctuation marks.
|
||||||
|
duration = round(librosa.get_duration(filename=wav_file),2)
|
||||||
|
char_per_sec = round(phrase_len / duration,2)
|
||||||
|
|
||||||
|
if decimal_use_comma:
|
||||||
|
duration = str(duration).replace(".",",")
|
||||||
|
char_per_sec = str(char_per_sec).replace(".",",")
|
||||||
|
|
||||||
|
out_csv.write(row[0] + ".wav;" + str(duration) + ";" + str(phrase_len) + ";" + str(char_per_sec) + ";no\n")
|
||||||
|
|
||||||
|
out_csv.close()
|
48
helperScripts/removeFilesFromDataset.py
Normal file
48
helperScripts/removeFilesFromDataset.py
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
# This script removes recordings from an ljspeech file/directory structured dataset based on CSV file from "getDatasetSpeechRate"
|
||||||
|
# Writte by Thorsten Müller (deep-learning-german@gmx.net) and provided without any warranty.
|
||||||
|
# https://github.com/thorstenMueller/deep-learning-german-tts/
|
||||||
|
# https://twitter.com/ThorstenVoice
|
||||||
|
|
||||||
|
# Changelog:
|
||||||
|
# v0.1 - 26.09.2021 - Initial version
|
||||||
|
|
||||||
|
import os
|
||||||
|
import csv
|
||||||
|
import shutil
|
||||||
|
|
||||||
|
dataset_dir = "/Users/thorsten/Downloads/thorsten-export-20210909/" # Directory where metadata.csv is in
|
||||||
|
subfolder_removed = "___removed"
|
||||||
|
in_csv_file = os.path.join(dataset_dir,"speech_rate_report.csv")
|
||||||
|
to_remove = []
|
||||||
|
|
||||||
|
# Open metadata.csv file
|
||||||
|
with open(os.path.join(dataset_dir,in_csv_file)) as csvfile:
|
||||||
|
reader = csv.reader(csvfile, delimiter=';')
|
||||||
|
for row in reader:
|
||||||
|
if row[4] == "yes":
|
||||||
|
# Recording in that row should be removed from dataset
|
||||||
|
to_remove.append(row[0])
|
||||||
|
print("Recording " + row[0] + " will be removed from dataset.")
|
||||||
|
|
||||||
|
print("\n" + str(len(to_remove)) + " recordings has been marked for deletion.")
|
||||||
|
|
||||||
|
if len(to_remove) > 0:
|
||||||
|
|
||||||
|
metadata_cleaned = open(os.path.join(dataset_dir,"metadata_cleaned.csv"),"w")
|
||||||
|
|
||||||
|
# Create new subdirectory for removed wav files
|
||||||
|
removed_dir = os.path.join(dataset_dir,subfolder_removed)
|
||||||
|
if not os.path.exists(removed_dir):
|
||||||
|
os.makedirs(removed_dir)
|
||||||
|
|
||||||
|
# Remove lines from metadata.csv and move wav files to new subdirectory
|
||||||
|
with open(os.path.join(dataset_dir,"metadata.csv")) as csvfile:
|
||||||
|
reader = csv.reader(csvfile, delimiter='|')
|
||||||
|
for row in reader:
|
||||||
|
if (row[0] + ".wav") not in to_remove:
|
||||||
|
metadata_cleaned.write(row[0] + "|" + row[1] + "|" + row[2] + "\n")
|
||||||
|
else:
|
||||||
|
# Move recording to new subfolder
|
||||||
|
shutil.move(os.path.join(dataset_dir,"wavs",row[0] + ".wav"),removed_dir)
|
||||||
|
|
||||||
|
metadata_cleaned.close()
|
Loading…
Reference in New Issue
Block a user