Added script to create LJSpeech dataset out of Mimic-Recording-Studio recordings.

This commit is contained in:
Thorsten Mueller 2021-07-04 22:33:38 +02:00
parent 9e68d99ee7
commit ba60fc57d4

View File

@ -0,0 +1,119 @@
# This script generates the folder structure for ljspeech-1.1 processing from mimic-recording-studio database
# Changelog
# v1.0 - Initial release by Thorsten Müller (https://github.com/thorstenMueller/deep-learning-german-tts)
# v1.1 - Great improvements by Peter Schmalfeldt (https://github.com/manifestinteractive)
# - Audio processing with ffmpeg (mono and samplerate of 22.050 Hz)
# - Much better Python coding than my original version
# - Greater logging output to command line
# - See more details here: https://gist.github.com/manifestinteractive/6fd9be62d0ede934d4e1171e5e751aba
# - Thanks Peter, it's a great contribution :-)
# v1.2 - Added choice for choosing which recording session should be exported as LJSpeech
import glob
import sqlite3
import ffmpeg
import os
from shutil import copyfile
from shutil import rmtree
# Setup Directory Data
cwd = os.path.dirname(os.path.abspath(__file__))
mrs_dir = os.path.join(cwd, os.pardir, "mimic-recording-studio")
output_dir = os.path.join(cwd, "dataset")
output_dir_audio = ""
output_dir_audio_temp=""
output_dir_speech = ""
# Create folders needed for ljspeech
def create_folders():
global output_dir
global output_dir_audio
global output_dir_audio_temp
global output_dir_speech
print('→ Creating Dataset Folders')
output_dir_speech = os.path.join(output_dir, "LJSpeech-1.1")
# Delete existing folder if exists for clean run
if os.path.exists(output_dir_speech):
rmtree(output_dir_speech)
output_dir_audio = os.path.join(output_dir_speech, "wavs")
output_dir_audio_temp = os.path.join(output_dir_speech, "temp")
# Create Clean Folders
os.makedirs(output_dir_speech)
os.makedirs(output_dir_audio)
os.makedirs(output_dir_audio_temp)
def convert_audio():
global output_dir_audio
global output_dir_audio_temp
recordings = len([name for name in os.listdir(output_dir_audio_temp) if os.path.isfile(os.path.join(output_dir_audio_temp,name))])
print('→ Converting %s Audio Files to 22050 Hz, 16 Bit, Mono\n' % "{:,}".format(recordings))
for idx, wav in enumerate(glob.glob(os.path.join(output_dir_audio_temp, "*.wav"))):
percent = (idx + 1) / recordings
print(' \033[96m%s\033[0m \033[2m%s / %s (%s)\033[0m ' % (os.path.basename(wav), "{:,}".format((idx + 1)), "{:,}".format(recordings), "{:.0%}".format(percent)))
# Convert WAV file to required format
(ffmpeg
.input(wav)
.output(os.path.join(output_dir_audio, os.path.basename(wav)), acodec='pcm_s16le', ac=1, ar=22050, loglevel='error')
.overwrite_output()
.run(capture_stdout=True)
)
# Delete Temp File
os.remove(wav)
# Remove Temp Folder
rmtree(output_dir_audio_temp)
def create_meta_data():
print('→ Creating META Data')
conn = sqlite3.connect(os.path.join(mrs_dir, "backend", "db", "mimicstudio.db"))
c = conn.cursor()
# Create metadata.csv for ljspeech
metadata = open(os.path.join(output_dir_speech, "metadata.csv"), mode="w", encoding="utf8")
# List available recording sessions
user_models = c.execute('SELECT uuid, user_name from usermodel ORDER BY created_date DESC').fetchall()
user_id = user_models[0][0]
for row in user_models:
print(row[0] + ' -> ' + row[1])
user_answer = input('Please choose ID of recording session to export (default is newest session) [' + user_id + ']: ')
if user_answer:
user_id = user_answer
for row in c.execute('SELECT audio_id, prompt, lower(prompt) FROM audiomodel WHERE user_id = "' + user_id + '" ORDER BY length(prompt)'):
metadata.write(row[0] + "|" + row[1] + "|" + row[2] + "\n")
copyfile(os.path.join(mrs_dir, "backend", "audio_files", user_id, row[0] + ".wav"), os.path.join(output_dir_audio_temp, row[0] + ".wav"))
metadata.close()
conn.close()
def main():
print('\n\033[48;5;22m MRS to LJ Speech Processor \033[0m\n')
create_folders()
create_meta_data()
convert_audio()
print('\n\033[38;5;86;1m✔\033[0m COMPLETE【ツ】\n')
if __name__ == '__main__':
main()