From f13bcaf63ee3a61c9bdeb719fbde44c3ae1ffcb3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Thorsten=20M=C3=BCller?= Date: Sun, 5 Mar 2023 16:19:50 +0100 Subject: [PATCH] Added Windows TTS training recipe Added modified vits recipe for Thorsten-Voice model training using Windows --- Youtube/train_vits_win.py | 94 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 94 insertions(+) create mode 100644 Youtube/train_vits_win.py diff --git a/Youtube/train_vits_win.py b/Youtube/train_vits_win.py new file mode 100644 index 0000000..83640a5 --- /dev/null +++ b/Youtube/train_vits_win.py @@ -0,0 +1,94 @@ +import os + +from trainer import Trainer, TrainerArgs + +from TTS.tts.configs.shared_configs import BaseDatasetConfig +from TTS.tts.configs.vits_config import VitsConfig +from TTS.tts.datasets import load_tts_samples +from TTS.tts.models.vits import Vits, VitsAudioConfig +from TTS.tts.utils.text.tokenizer import TTSTokenizer +from TTS.utils.audio import AudioProcessor + +def main(): + + output_path = os.path.dirname(os.path.abspath(__file__)) + #output_path = "c:\\temp\tts" + dataset_config = BaseDatasetConfig( + formatter="ljspeech", meta_file_train="metadata_small.csv", path="C:\\Users\\ThorstenVoice\\TTS-Training\\ThorstenVoice-Dataset_2022.10" + ) + audio_config = VitsAudioConfig( + sample_rate=22050, win_length=1024, hop_length=256, num_mels=80, mel_fmin=0, mel_fmax=None + ) + + config = VitsConfig( + audio=audio_config, + run_name="vits_thorsten-voice", + batch_size=4, + eval_batch_size=4, + batch_group_size=5, + num_loader_workers=1, + num_eval_loader_workers=1, + run_eval=True, + test_delay_epochs=-1, + epochs=1000, + text_cleaner="phoneme_cleaners", + use_phonemes=True, + phoneme_language="de", + phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), + compute_input_seq_cache=True, + print_step=25, + print_eval=True, + mixed_precision=False, + output_path=output_path, + datasets=[dataset_config], + cudnn_benchmark=False, + test_sentences=[ + "Es hat mich viel Zeit gekostet ein Stimme zu entwickeln, jetzt wo ich sie habe werde ich nicht mehr schweigen.", + "Sei eine Stimme, kein Echo.", + "Es tut mir Leid David. Das kann ich leider nicht machen.", + "Dieser Kuchen ist großartig. Er ist so lecker und feucht.", + "Vor dem 22. November 1963.", + ], + ) + + # INITIALIZE THE AUDIO PROCESSOR + # Audio processor is used for feature extraction and audio I/O. + # It mainly serves to the dataloader and the training loggers. + ap = AudioProcessor.init_from_config(config) + + # INITIALIZE THE TOKENIZER + # Tokenizer is used to convert text to sequences of token IDs. + # config is updated with the default characters if not defined in the config. + tokenizer, config = TTSTokenizer.init_from_config(config) + + # LOAD DATA SAMPLES + # Each sample is a list of ```[text, audio_file_path, speaker_name]``` + # You can define your custom sample loader returning the list of samples. + # Or define your custom formatter and pass it to the `load_tts_samples`. + # Check `TTS.tts.datasets.load_tts_samples` for more details. + train_samples, eval_samples = load_tts_samples( + dataset_config, + eval_split=True, + eval_split_max_size=config.eval_split_max_size, + eval_split_size=config.eval_split_size, + ) + + # init model + model = Vits(config, ap, tokenizer, speaker_manager=None) + + # init the trainer and 🚀 + trainer = Trainer( + TrainerArgs(), + config, + output_path, + model=model, + train_samples=train_samples, + eval_samples=eval_samples, + ) + trainer.fit() + print("Fertig!") + +from multiprocessing import Process, freeze_support +if __name__ == '__main__': + freeze_support() # needed for Windows + main()