import os from trainer import Trainer, TrainerArgs from TTS.tts.configs.shared_configs import BaseDatasetConfig from TTS.tts.configs.vits_config import VitsConfig from TTS.tts.datasets import load_tts_samples from TTS.tts.models.vits import Vits, VitsAudioConfig from TTS.tts.utils.text.tokenizer import TTSTokenizer from TTS.utils.audio import AudioProcessor def main(): output_path = os.path.dirname(os.path.abspath(__file__)) #output_path = "c:\\temp\tts" dataset_config = BaseDatasetConfig( formatter="ljspeech", meta_file_train="metadata_small.csv", path="C:\\Users\\ThorstenVoice\\TTS-Training\\ThorstenVoice-Dataset_2022.10" ) audio_config = VitsAudioConfig( sample_rate=22050, win_length=1024, hop_length=256, num_mels=80, mel_fmin=0, mel_fmax=None ) config = VitsConfig( audio=audio_config, run_name="vits_thorsten-voice", batch_size=4, eval_batch_size=4, batch_group_size=5, num_loader_workers=1, num_eval_loader_workers=1, run_eval=True, test_delay_epochs=-1, epochs=1000, text_cleaner="phoneme_cleaners", use_phonemes=True, phoneme_language="de", phoneme_cache_path=os.path.join(output_path, "phoneme_cache"), compute_input_seq_cache=True, print_step=25, print_eval=True, mixed_precision=False, output_path=output_path, datasets=[dataset_config], cudnn_benchmark=False, test_sentences=[ "Es hat mich viel Zeit gekostet ein Stimme zu entwickeln, jetzt wo ich sie habe werde ich nicht mehr schweigen.", "Sei eine Stimme, kein Echo.", "Es tut mir Leid David. Das kann ich leider nicht machen.", "Dieser Kuchen ist großartig. Er ist so lecker und feucht.", "Vor dem 22. November 1963.", ], ) # INITIALIZE THE AUDIO PROCESSOR # Audio processor is used for feature extraction and audio I/O. # It mainly serves to the dataloader and the training loggers. ap = AudioProcessor.init_from_config(config) # INITIALIZE THE TOKENIZER # Tokenizer is used to convert text to sequences of token IDs. # config is updated with the default characters if not defined in the config. tokenizer, config = TTSTokenizer.init_from_config(config) # LOAD DATA SAMPLES # Each sample is a list of ```[text, audio_file_path, speaker_name]``` # You can define your custom sample loader returning the list of samples. # Or define your custom formatter and pass it to the `load_tts_samples`. # Check `TTS.tts.datasets.load_tts_samples` for more details. train_samples, eval_samples = load_tts_samples( dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size, ) # init model model = Vits(config, ap, tokenizer, speaker_manager=None) # init the trainer and 🚀 trainer = Trainer( TrainerArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples, ) trainer.fit() print("Fertig!") from multiprocessing import Process, freeze_support if __name__ == '__main__': freeze_support() # needed for Windows main()