mirror of
https://github.com/thorstenMueller/Thorsten-Voice.git
synced 2024-11-22 07:53:21 +01:00
42 lines
1.7 KiB
Python
42 lines
1.7 KiB
Python
# This script gets speech rate per audio recording from a voice dataset (ljspeech file and directory structure)
|
|
# Writte by Thorsten Müller (deep-learning-german@gmx.net) and provided without any warranty.
|
|
# https://github.com/thorstenMueller/deep-learning-german-tts/
|
|
# https://twitter.com/ThorstenVoice
|
|
|
|
# Changelog:
|
|
# v0.1 - 26.09.2021 - Initial version
|
|
|
|
from genericpath import exists
|
|
import os
|
|
import librosa
|
|
import csv
|
|
|
|
dataset_dir = "/home/thorsten/___dev/tts/dataset/Thorsten-neutral-Dec2021-44k/" # Directory where metadata.csv is in
|
|
out_csv_file = os.path.join(dataset_dir,"speech_rate_report.csv")
|
|
decimal_use_comma = True # False: Splitting decimal value with a dot (.); True: Comma (,)
|
|
|
|
out_csv = open(out_csv_file,"w")
|
|
out_csv.write("filename;audiolength_sec;number_chars;chars_per_sec;remove_from_dataset\n")
|
|
|
|
# Open metadata.csv file
|
|
with open(os.path.join(dataset_dir,"metadata.csv")) as csvfile:
|
|
reader = csv.reader(csvfile, delimiter='|')
|
|
for row in reader:
|
|
wav_file = os.path.join(dataset_dir,"wavs",row[0] + ".wav")
|
|
|
|
if exists(wav_file):
|
|
# Gather values for report.csv output
|
|
phrase_len = len(row[1]) - 1 # Do not count punctuation marks.
|
|
duration = round(librosa.get_duration(filename=wav_file),2)
|
|
char_per_sec = round(phrase_len / duration,2)
|
|
|
|
if decimal_use_comma:
|
|
duration = str(duration).replace(".",",")
|
|
char_per_sec = str(char_per_sec).replace(".",",")
|
|
|
|
out_csv.write(row[0] + ".wav;" + str(duration) + ";" + str(phrase_len) + ";" + str(char_per_sec) + ";no\n")
|
|
else:
|
|
print("File " + wav_file + " does not exist.")
|
|
|
|
out_csv.close()
|