mirror of
https://github.com/thorstenMueller/Thorsten-Voice.git
synced 2024-11-21 23:43:12 +01:00
f13bcaf63e
Added modified vits recipe for Thorsten-Voice model training using Windows
95 lines
3.0 KiB
Python
95 lines
3.0 KiB
Python
import os
|
|
|
|
from trainer import Trainer, TrainerArgs
|
|
|
|
from TTS.tts.configs.shared_configs import BaseDatasetConfig
|
|
from TTS.tts.configs.vits_config import VitsConfig
|
|
from TTS.tts.datasets import load_tts_samples
|
|
from TTS.tts.models.vits import Vits, VitsAudioConfig
|
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
|
from TTS.utils.audio import AudioProcessor
|
|
|
|
def main():
|
|
|
|
output_path = os.path.dirname(os.path.abspath(__file__))
|
|
#output_path = "c:\\temp\tts"
|
|
dataset_config = BaseDatasetConfig(
|
|
formatter="ljspeech", meta_file_train="metadata_small.csv", path="C:\\Users\\ThorstenVoice\\TTS-Training\\ThorstenVoice-Dataset_2022.10"
|
|
)
|
|
audio_config = VitsAudioConfig(
|
|
sample_rate=22050, win_length=1024, hop_length=256, num_mels=80, mel_fmin=0, mel_fmax=None
|
|
)
|
|
|
|
config = VitsConfig(
|
|
audio=audio_config,
|
|
run_name="vits_thorsten-voice",
|
|
batch_size=4,
|
|
eval_batch_size=4,
|
|
batch_group_size=5,
|
|
num_loader_workers=1,
|
|
num_eval_loader_workers=1,
|
|
run_eval=True,
|
|
test_delay_epochs=-1,
|
|
epochs=1000,
|
|
text_cleaner="phoneme_cleaners",
|
|
use_phonemes=True,
|
|
phoneme_language="de",
|
|
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
|
compute_input_seq_cache=True,
|
|
print_step=25,
|
|
print_eval=True,
|
|
mixed_precision=False,
|
|
output_path=output_path,
|
|
datasets=[dataset_config],
|
|
cudnn_benchmark=False,
|
|
test_sentences=[
|
|
"Es hat mich viel Zeit gekostet ein Stimme zu entwickeln, jetzt wo ich sie habe werde ich nicht mehr schweigen.",
|
|
"Sei eine Stimme, kein Echo.",
|
|
"Es tut mir Leid David. Das kann ich leider nicht machen.",
|
|
"Dieser Kuchen ist großartig. Er ist so lecker und feucht.",
|
|
"Vor dem 22. November 1963.",
|
|
],
|
|
)
|
|
|
|
# INITIALIZE THE AUDIO PROCESSOR
|
|
# Audio processor is used for feature extraction and audio I/O.
|
|
# It mainly serves to the dataloader and the training loggers.
|
|
ap = AudioProcessor.init_from_config(config)
|
|
|
|
# INITIALIZE THE TOKENIZER
|
|
# Tokenizer is used to convert text to sequences of token IDs.
|
|
# config is updated with the default characters if not defined in the config.
|
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
|
|
|
# LOAD DATA SAMPLES
|
|
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
|
# You can define your custom sample loader returning the list of samples.
|
|
# Or define your custom formatter and pass it to the `load_tts_samples`.
|
|
# Check `TTS.tts.datasets.load_tts_samples` for more details.
|
|
train_samples, eval_samples = load_tts_samples(
|
|
dataset_config,
|
|
eval_split=True,
|
|
eval_split_max_size=config.eval_split_max_size,
|
|
eval_split_size=config.eval_split_size,
|
|
)
|
|
|
|
# init model
|
|
model = Vits(config, ap, tokenizer, speaker_manager=None)
|
|
|
|
# init the trainer and 🚀
|
|
trainer = Trainer(
|
|
TrainerArgs(),
|
|
config,
|
|
output_path,
|
|
model=model,
|
|
train_samples=train_samples,
|
|
eval_samples=eval_samples,
|
|
)
|
|
trainer.fit()
|
|
print("Fertig!")
|
|
|
|
from multiprocessing import Process, freeze_support
|
|
if __name__ == '__main__':
|
|
freeze_support() # needed for Windows
|
|
main()
|