# take input from the user num = as.integer(readline(prompt="Enter a number: ")) factorial = 1 # check is the number is negative, positive or zero if(num < 0) { print("Sorry, factorial does not exist for negative numbers") } else if(num == 0) { print("The factorial of 0 is 1") } else { for(i in 1:num) { factorial = factorial * i } print(paste("The factorial of", num ,"is",factorial)) }  x <- 0 if (x < 0) { print("Negative number") } else if (x > 0) { print("Positive number") } else print("Zero")  x <- 1:5 for (val in x) { if (val == 3){ next } print(val) }  x <- 1 repeat { print(x) x = x+1 if (x == 6){ break } }  `%divisible%` <- function(x,y) { if (x%%y ==0) return (TRUE) else return (FALSE) }  switch("length", "color" = "red", "shape" = "square", "length" = 5) [1] 5  recursive.factorial <- function(x) { if (x == 0) return (1) else return (x * recursive.factorial(x-1)) }  pow <- function(x, y) { # function to print x raised to the power y result <- x^y print(paste(x,"raised to the power", y, "is", result)) }  A <- read.table("x.data", sep=",",  col.names=c("year", "my1", "my2")) nrow(A) # Count the rows in A  summary(A$year)   A$newcol <- A$my1 + A$my2 # Makes a new newvar <- A$my1 - A$my2 # Makes a  A$my1 <- NULL # Removes  str(A) summary(A) library(Hmisc)  contents(A) describe(A)  set.seed(102) # This yields a good illustration. x <- sample(1:3, 15, replace=TRUE) education <- factor(x, labels=c("None", "School", "College")) x <- sample(1:2, 15, replace=TRUE) gender <- factor(x, labels=c("Male", "Female")) age <- runif(15, min=20,max=60)  D <- data.frame(age, gender, education) rm(x,age,gender,education) print(D)  # Table about education table(D$education)  # Table about education and gender -- table(D$gender, D$education) # Joint distribution of education and gender -- table(D$gender, D$education)/nrow(D)  # Add in the marginal distributions also addmargins(table(D$gender, D$education)) addmargins(table(D$gender, D$education))/nrow(D)  # Generate a good LaTeX table out of it -- library(xtable) xtable(addmargins(table(D$gender, D$education))/nrow(D),  digits=c(0,2,2,2,2))   by(D$age, D$gender, mean) by(D$age, D$gender, sd) by(D$age, D$gender, summary)  a <- matrix(by(D$age, list(D$gender, D$education), mean), nrow=2) rownames(a) <- levels(D$gender) colnames(a) <- levels(D$education) print(a) print(xtable(a))  dat <- read.csv(file = "files/dataset-2013-01.csv", header = TRUE) interim_object <- data.frame(rep(1:100, 10),  rep(101:200, 10),  rep(201:300, 10)) object.size(interim_object)  rm("interim_object")  ls()  rm(list = ls())  vector1 <- c(5,9,3) vector2 <- c(10,11,12,13,14,15) array1 <- array(c(vector1,vector2),dim = c(3,3,2)) vector3 <- c(9,1,0) vector4 <- c(6,0,11,3,14,1,2,6,9) array2 <- array(c(vector1,vector2),dim = c(3,3,2)) matrix1 <- array1[,,2] matrix2 <- array2[,,2] result <- matrix1+matrix2 print(result)  column.names <- c("COL1","COL2","COL3") row.names <- c("ROW1","ROW2","ROW3") matrix.names <- c("Matrix1","Matrix2") result <- array(c(vector1,vector2),dim = c(3,3,2),dimnames = list(row.names,  column.names, matrix.names)) print(result[3,,2]) print(result[1,3,1]) print(result[,,2])  # Load the package required to read JSON files. library("rjson") result <- fromJSON(file = "input.json") print(result)  x <- c(151, 174, 138, 186, 128, 136, 179, 163, 152, 131) y <- c(63, 81, 56, 91, 47, 57, 76, 72, 62, 48) relation <- lm(y~x) print(relation)  relation <- lm(y~x) png(file = "linearregression.png") plot(y,x,col = "blue",main = "Height & Weight Regression", abline(lm(x~y)),cex = 1.3,pch = 16,xlab = "Weight in Kg",ylab = "Height in cm") dev.off()  data <- c("East","West","East","North","North","East","West","West","West","East","North") print(data) print(is.factor(data)) factor_data <- factor(data) print(factor_data) print(is.factor(factor_data))  v <- c(7,12,28,3,41)  # Give the chart file a name. png(file = "line_chart_label_colored.jpg") plot(v,type = "o", col = "red", xlab = "Month", ylab = "Rain fall", main = "Rain fall chart")