Files
deskhop/pico-sdk/lib/tinyusb/src/class/cdc/cdc_host.c
Hrvoje Cavrak 09935f5f87 - add windows workaround
- add mouse acceleration (configurable in user_config.h)
- add keyboard shortcuts for output configuration
- after several reports, bundling pico-sdk and tinyusb to simplify building
- bugfixes
2024-03-24 19:02:37 +01:00

1175 lines
36 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if (CFG_TUH_ENABLED && CFG_TUH_CDC)
#include "host/usbh.h"
#include "host/usbh_pvt.h"
#include "cdc_host.h"
// Level where CFG_TUSB_DEBUG must be at least for this driver is logged
#ifndef CFG_TUH_CDC_LOG_LEVEL
#define CFG_TUH_CDC_LOG_LEVEL CFG_TUH_LOG_LEVEL
#endif
#define TU_LOG_DRV(...) TU_LOG(CFG_TUH_CDC_LOG_LEVEL, __VA_ARGS__)
//--------------------------------------------------------------------+
// Host CDC Interface
//--------------------------------------------------------------------+
typedef struct {
uint8_t daddr;
uint8_t bInterfaceNumber;
uint8_t bInterfaceSubClass;
uint8_t bInterfaceProtocol;
uint8_t serial_drid; // Serial Driver ID
cdc_acm_capability_t acm_capability;
uint8_t ep_notif;
uint8_t line_state; // DTR (bit0), RTS (bit1)
TU_ATTR_ALIGNED(4) cdc_line_coding_t line_coding; // Baudrate, stop bits, parity, data width
tuh_xfer_cb_t user_control_cb;
struct {
tu_edpt_stream_t tx;
tu_edpt_stream_t rx;
uint8_t tx_ff_buf[CFG_TUH_CDC_TX_BUFSIZE];
CFG_TUH_MEM_ALIGN uint8_t tx_ep_buf[CFG_TUH_CDC_TX_EPSIZE];
uint8_t rx_ff_buf[CFG_TUH_CDC_TX_BUFSIZE];
CFG_TUH_MEM_ALIGN uint8_t rx_ep_buf[CFG_TUH_CDC_TX_EPSIZE];
} stream;
} cdch_interface_t;
CFG_TUH_MEM_SECTION
static cdch_interface_t cdch_data[CFG_TUH_CDC];
//--------------------------------------------------------------------+
// Serial Driver
//--------------------------------------------------------------------+
//------------- ACM prototypes -------------//
static bool acm_open(uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len);
static void acm_process_config(tuh_xfer_t* xfer);
static bool acm_set_line_coding(cdch_interface_t* p_cdc, cdc_line_coding_t const* line_coding, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool acm_set_control_line_state(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool acm_set_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
//------------- FTDI prototypes -------------//
#if CFG_TUH_CDC_FTDI
#include "serial/ftdi_sio.h"
static uint16_t const ftdi_vid_pid_list[][2] = {CFG_TUH_CDC_FTDI_VID_PID_LIST };
enum {
FTDI_PID_COUNT = sizeof(ftdi_vid_pid_list) / sizeof(ftdi_vid_pid_list[0])
};
// Store last request baudrate since divisor to baudrate is not easy
static uint32_t _ftdi_requested_baud;
static bool ftdi_open(uint8_t daddr, const tusb_desc_interface_t *itf_desc, uint16_t max_len);
static void ftdi_process_config(tuh_xfer_t* xfer);
static bool ftdi_sio_set_modem_ctrl(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool ftdi_sio_set_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
#endif
//------------- CP210X prototypes -------------//
#if CFG_TUH_CDC_CP210X
#include "serial/cp210x.h"
static uint16_t const cp210x_vid_pid_list[][2] = {CFG_TUH_CDC_CP210X_VID_PID_LIST };
enum {
CP210X_PID_COUNT = sizeof(cp210x_vid_pid_list) / sizeof(cp210x_vid_pid_list[0])
};
static bool cp210x_open(uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len);
static void cp210x_process_config(tuh_xfer_t* xfer);
static bool cp210x_set_modem_ctrl(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
static bool cp210x_set_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
#endif
enum {
SERIAL_DRIVER_ACM = 0,
#if CFG_TUH_CDC_FTDI
SERIAL_DRIVER_FTDI,
#endif
#if CFG_TUH_CDC_CP210X
SERIAL_DRIVER_CP210X,
#endif
};
typedef struct {
void (*const process_set_config)(tuh_xfer_t* xfer);
bool (*const set_control_line_state)(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
bool (*const set_baudrate)(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data);
} cdch_serial_driver_t;
// Note driver list must be in the same order as SERIAL_DRIVER enum
static const cdch_serial_driver_t serial_drivers[] = {
{ .process_set_config = acm_process_config,
.set_control_line_state = acm_set_control_line_state,
.set_baudrate = acm_set_baudrate
},
#if CFG_TUH_CDC_FTDI
{ .process_set_config = ftdi_process_config,
.set_control_line_state = ftdi_sio_set_modem_ctrl,
.set_baudrate = ftdi_sio_set_baudrate
},
#endif
#if CFG_TUH_CDC_CP210X
{ .process_set_config = cp210x_process_config,
.set_control_line_state = cp210x_set_modem_ctrl,
.set_baudrate = cp210x_set_baudrate
},
#endif
};
enum {
SERIAL_DRIVER_COUNT = sizeof(serial_drivers) / sizeof(serial_drivers[0])
};
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
static inline cdch_interface_t* get_itf(uint8_t idx)
{
TU_ASSERT(idx < CFG_TUH_CDC, NULL);
cdch_interface_t* p_cdc = &cdch_data[idx];
return (p_cdc->daddr != 0) ? p_cdc : NULL;
}
static inline uint8_t get_idx_by_ep_addr(uint8_t daddr, uint8_t ep_addr)
{
for(uint8_t i=0; i<CFG_TUH_CDC; i++)
{
cdch_interface_t* p_cdc = &cdch_data[i];
if ( (p_cdc->daddr == daddr) &&
(ep_addr == p_cdc->ep_notif || ep_addr == p_cdc->stream.rx.ep_addr || ep_addr == p_cdc->stream.tx.ep_addr))
{
return i;
}
}
return TUSB_INDEX_INVALID_8;
}
static cdch_interface_t* make_new_itf(uint8_t daddr, tusb_desc_interface_t const *itf_desc)
{
for(uint8_t i=0; i<CFG_TUH_CDC; i++)
{
if (cdch_data[i].daddr == 0) {
cdch_interface_t* p_cdc = &cdch_data[i];
p_cdc->daddr = daddr;
p_cdc->bInterfaceNumber = itf_desc->bInterfaceNumber;
p_cdc->bInterfaceSubClass = itf_desc->bInterfaceSubClass;
p_cdc->bInterfaceProtocol = itf_desc->bInterfaceProtocol;
p_cdc->line_state = 0;
return p_cdc;
}
}
return NULL;
}
static bool open_ep_stream_pair(cdch_interface_t* p_cdc , tusb_desc_endpoint_t const *desc_ep);
static void set_config_complete(cdch_interface_t * p_cdc, uint8_t idx, uint8_t itf_num);
static void cdch_internal_control_complete(tuh_xfer_t* xfer);
//--------------------------------------------------------------------+
// APPLICATION API
//--------------------------------------------------------------------+
uint8_t tuh_cdc_itf_get_index(uint8_t daddr, uint8_t itf_num)
{
for(uint8_t i=0; i<CFG_TUH_CDC; i++)
{
const cdch_interface_t* p_cdc = &cdch_data[i];
if (p_cdc->daddr == daddr && p_cdc->bInterfaceNumber == itf_num) return i;
}
return TUSB_INDEX_INVALID_8;
}
bool tuh_cdc_itf_get_info(uint8_t idx, tuh_itf_info_t* info)
{
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc && info);
info->daddr = p_cdc->daddr;
// re-construct descriptor
tusb_desc_interface_t* desc = &info->desc;
desc->bLength = sizeof(tusb_desc_interface_t);
desc->bDescriptorType = TUSB_DESC_INTERFACE;
desc->bInterfaceNumber = p_cdc->bInterfaceNumber;
desc->bAlternateSetting = 0;
desc->bNumEndpoints = 2u + (p_cdc->ep_notif ? 1u : 0u);
desc->bInterfaceClass = TUSB_CLASS_CDC;
desc->bInterfaceSubClass = p_cdc->bInterfaceSubClass;
desc->bInterfaceProtocol = p_cdc->bInterfaceProtocol;
desc->iInterface = 0; // not used yet
return true;
}
bool tuh_cdc_mounted(uint8_t idx)
{
cdch_interface_t* p_cdc = get_itf(idx);
return p_cdc != NULL;
}
bool tuh_cdc_get_dtr(uint8_t idx)
{
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return (p_cdc->line_state & CDC_CONTROL_LINE_STATE_DTR) ? true : false;
}
bool tuh_cdc_get_rts(uint8_t idx)
{
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return (p_cdc->line_state & CDC_CONTROL_LINE_STATE_RTS) ? true : false;
}
bool tuh_cdc_get_local_line_coding(uint8_t idx, cdc_line_coding_t* line_coding)
{
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
*line_coding = p_cdc->line_coding;
return true;
}
//--------------------------------------------------------------------+
// Write
//--------------------------------------------------------------------+
uint32_t tuh_cdc_write(uint8_t idx, void const* buffer, uint32_t bufsize)
{
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return tu_edpt_stream_write(&p_cdc->stream.tx, buffer, bufsize);
}
uint32_t tuh_cdc_write_flush(uint8_t idx)
{
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return tu_edpt_stream_write_xfer(&p_cdc->stream.tx);
}
bool tuh_cdc_write_clear(uint8_t idx)
{
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return tu_edpt_stream_clear(&p_cdc->stream.tx);
}
uint32_t tuh_cdc_write_available(uint8_t idx)
{
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return tu_edpt_stream_write_available(&p_cdc->stream.tx);
}
//--------------------------------------------------------------------+
// Read
//--------------------------------------------------------------------+
uint32_t tuh_cdc_read (uint8_t idx, void* buffer, uint32_t bufsize)
{
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return tu_edpt_stream_read(&p_cdc->stream.rx, buffer, bufsize);
}
uint32_t tuh_cdc_read_available(uint8_t idx)
{
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return tu_edpt_stream_read_available(&p_cdc->stream.rx);
}
bool tuh_cdc_peek(uint8_t idx, uint8_t* ch)
{
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
return tu_edpt_stream_peek(&p_cdc->stream.rx, ch);
}
bool tuh_cdc_read_clear (uint8_t idx)
{
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc);
bool ret = tu_edpt_stream_clear(&p_cdc->stream.rx);
tu_edpt_stream_read_xfer(&p_cdc->stream.rx);
return ret;
}
//--------------------------------------------------------------------+
// Control Endpoint API
//--------------------------------------------------------------------+
// internal control complete to update state such as line state, encoding
static void cdch_internal_control_complete(tuh_xfer_t* xfer)
{
uint8_t const itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
uint8_t idx = tuh_cdc_itf_get_index(xfer->daddr, itf_num);
cdch_interface_t* p_cdc = get_itf(idx);
TU_ASSERT(p_cdc, );
if (xfer->result == XFER_RESULT_SUCCESS)
{
switch (p_cdc->serial_drid) {
case SERIAL_DRIVER_ACM:
switch (xfer->setup->bRequest) {
case CDC_REQUEST_SET_CONTROL_LINE_STATE:
p_cdc->line_state = (uint8_t) tu_le16toh(xfer->setup->wValue);
break;
case CDC_REQUEST_SET_LINE_CODING: {
uint16_t const len = tu_min16(sizeof(cdc_line_coding_t), tu_le16toh(xfer->setup->wLength));
memcpy(&p_cdc->line_coding, xfer->buffer, len);
}
break;
default: break;
}
break;
#if CFG_TUH_CDC_FTDI
case SERIAL_DRIVER_FTDI:
switch (xfer->setup->bRequest) {
case FTDI_SIO_MODEM_CTRL:
p_cdc->line_state = (uint8_t) (tu_le16toh(xfer->setup->wValue) & 0x00ff);
break;
case FTDI_SIO_SET_BAUD_RATE:
// convert from divisor to baudrate is not supported
p_cdc->line_coding.bit_rate = _ftdi_requested_baud;
break;
default: break;
}
break;
#endif
#if CFG_TUH_CDC_CP210X
case SERIAL_DRIVER_CP210X:
switch(xfer->setup->bRequest) {
case CP210X_SET_MHS:
p_cdc->line_state = (uint8_t) (tu_le16toh(xfer->setup->wValue) & 0x00ff);
break;
case CP210X_SET_BAUDRATE: {
uint32_t baudrate;
memcpy(&baudrate, xfer->buffer, sizeof(uint32_t));
p_cdc->line_coding.bit_rate = tu_le32toh(baudrate);
}
break;
}
break;
#endif
default: break;
}
}
xfer->complete_cb = p_cdc->user_control_cb;
if (xfer->complete_cb) {
xfer->complete_cb(xfer);
}
}
bool tuh_cdc_set_control_line_state(uint8_t idx, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT);
cdch_serial_driver_t const* driver = &serial_drivers[p_cdc->serial_drid];
if ( complete_cb ) {
return driver->set_control_line_state(p_cdc, line_state, complete_cb, user_data);
}else {
// blocking
xfer_result_t result = XFER_RESULT_INVALID;
bool ret = driver->set_control_line_state(p_cdc, line_state, complete_cb, (uintptr_t) &result);
if (user_data) {
// user_data is not NULL, return result via user_data
*((xfer_result_t*) user_data) = result;
}
TU_VERIFY(ret && result == XFER_RESULT_SUCCESS);
p_cdc->line_state = (uint8_t) line_state;
return true;
}
}
bool tuh_cdc_set_baudrate(uint8_t idx, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
cdch_interface_t* p_cdc = get_itf(idx);
TU_VERIFY(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT);
cdch_serial_driver_t const* driver = &serial_drivers[p_cdc->serial_drid];
if ( complete_cb ) {
return driver->set_baudrate(p_cdc, baudrate, complete_cb, user_data);
}else {
// blocking
xfer_result_t result = XFER_RESULT_INVALID;
bool ret = driver->set_baudrate(p_cdc, baudrate, complete_cb, (uintptr_t) &result);
if (user_data) {
// user_data is not NULL, return result via user_data
*((xfer_result_t*) user_data) = result;
}
TU_VERIFY(ret && result == XFER_RESULT_SUCCESS);
p_cdc->line_coding.bit_rate = baudrate;
return true;
}
}
bool tuh_cdc_set_line_coding(uint8_t idx, cdc_line_coding_t const* line_coding, tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
cdch_interface_t* p_cdc = get_itf(idx);
// only ACM support this set line coding request
TU_VERIFY(p_cdc && p_cdc->serial_drid == SERIAL_DRIVER_ACM);
TU_VERIFY(p_cdc->acm_capability.support_line_request);
if ( complete_cb ) {
return acm_set_line_coding(p_cdc, line_coding, complete_cb, user_data);
}else {
// blocking
xfer_result_t result = XFER_RESULT_INVALID;
bool ret = acm_set_line_coding(p_cdc, line_coding, complete_cb, (uintptr_t) &result);
if (user_data) {
// user_data is not NULL, return result via user_data
*((xfer_result_t*) user_data) = result;
}
TU_VERIFY(ret && result == XFER_RESULT_SUCCESS);
p_cdc->line_coding = *line_coding;
return true;
}
}
//--------------------------------------------------------------------+
// CLASS-USBH API
//--------------------------------------------------------------------+
void cdch_init(void)
{
tu_memclr(cdch_data, sizeof(cdch_data));
for(size_t i=0; i<CFG_TUH_CDC; i++)
{
cdch_interface_t* p_cdc = &cdch_data[i];
tu_edpt_stream_init(&p_cdc->stream.tx, true, true, false,
p_cdc->stream.tx_ff_buf, CFG_TUH_CDC_TX_BUFSIZE,
p_cdc->stream.tx_ep_buf, CFG_TUH_CDC_TX_EPSIZE);
tu_edpt_stream_init(&p_cdc->stream.rx, true, false, false,
p_cdc->stream.rx_ff_buf, CFG_TUH_CDC_RX_BUFSIZE,
p_cdc->stream.rx_ep_buf, CFG_TUH_CDC_RX_EPSIZE);
}
}
void cdch_close(uint8_t daddr)
{
for(uint8_t idx=0; idx<CFG_TUH_CDC; idx++)
{
cdch_interface_t* p_cdc = &cdch_data[idx];
if (p_cdc->daddr == daddr)
{
TU_LOG_DRV(" CDCh close addr = %u index = %u\r\n", daddr, idx);
// Invoke application callback
if (tuh_cdc_umount_cb) tuh_cdc_umount_cb(idx);
//tu_memclr(p_cdc, sizeof(cdch_interface_t));
p_cdc->daddr = 0;
p_cdc->bInterfaceNumber = 0;
tu_edpt_stream_close(&p_cdc->stream.tx);
tu_edpt_stream_close(&p_cdc->stream.rx);
}
}
}
bool cdch_xfer_cb(uint8_t daddr, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes) {
// TODO handle stall response, retry failed transfer ...
TU_ASSERT(event == XFER_RESULT_SUCCESS);
uint8_t const idx = get_idx_by_ep_addr(daddr, ep_addr);
cdch_interface_t * p_cdc = get_itf(idx);
TU_ASSERT(p_cdc);
if ( ep_addr == p_cdc->stream.tx.ep_addr ) {
// invoke tx complete callback to possibly refill tx fifo
if (tuh_cdc_tx_complete_cb) tuh_cdc_tx_complete_cb(idx);
if ( 0 == tu_edpt_stream_write_xfer(&p_cdc->stream.tx) ) {
// If there is no data left, a ZLP should be sent if:
// - xferred_bytes is multiple of EP Packet size and not zero
tu_edpt_stream_write_zlp_if_needed(&p_cdc->stream.tx, xferred_bytes);
}
}
else if ( ep_addr == p_cdc->stream.rx.ep_addr ) {
#if CFG_TUH_CDC_FTDI
if (p_cdc->serial_drid == SERIAL_DRIVER_FTDI) {
// FTDI reserve 2 bytes for status
// FTDI status
// uint8_t status[2] = {
// p_cdc->stream.rx.ep_buf[0],
// p_cdc->stream.rx.ep_buf[1]
// };
tu_edpt_stream_read_xfer_complete_offset(&p_cdc->stream.rx, xferred_bytes, 2);
}else
#endif
{
tu_edpt_stream_read_xfer_complete(&p_cdc->stream.rx, xferred_bytes);
}
// invoke receive callback
if (tuh_cdc_rx_cb) tuh_cdc_rx_cb(idx);
// prepare for next transfer if needed
tu_edpt_stream_read_xfer(&p_cdc->stream.rx);
}else if ( ep_addr == p_cdc->ep_notif ) {
// TODO handle notification endpoint
}else {
TU_ASSERT(false);
}
return true;
}
//--------------------------------------------------------------------+
// Enumeration
//--------------------------------------------------------------------+
static bool open_ep_stream_pair(cdch_interface_t* p_cdc, tusb_desc_endpoint_t const *desc_ep)
{
for(size_t i=0; i<2; i++)
{
TU_ASSERT(TUSB_DESC_ENDPOINT == desc_ep->bDescriptorType &&
TUSB_XFER_BULK == desc_ep->bmAttributes.xfer);
TU_ASSERT(tuh_edpt_open(p_cdc->daddr, desc_ep));
if ( tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN )
{
tu_edpt_stream_open(&p_cdc->stream.rx, p_cdc->daddr, desc_ep);
}else
{
tu_edpt_stream_open(&p_cdc->stream.tx, p_cdc->daddr, desc_ep);
}
desc_ep = (tusb_desc_endpoint_t const*) tu_desc_next(desc_ep);
}
return true;
}
bool cdch_open(uint8_t rhport, uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len)
{
(void) rhport;
// Only support ACM subclass
// Note: Protocol 0xFF can be RNDIS device
if ( TUSB_CLASS_CDC == itf_desc->bInterfaceClass &&
CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == itf_desc->bInterfaceSubClass)
{
return acm_open(daddr, itf_desc, max_len);
}
#if CFG_TUH_CDC_FTDI || CFG_TUH_CDC_CP210X
else if ( TUSB_CLASS_VENDOR_SPECIFIC == itf_desc->bInterfaceClass )
{
uint16_t vid, pid;
TU_VERIFY(tuh_vid_pid_get(daddr, &vid, &pid));
#if CFG_TUH_CDC_FTDI
for (size_t i = 0; i < FTDI_PID_COUNT; i++) {
if (ftdi_vid_pid_list[i][0] == vid && ftdi_vid_pid_list[i][1] == pid) {
return ftdi_open(daddr, itf_desc, max_len);
}
}
#endif
#if CFG_TUH_CDC_CP210X
for (size_t i = 0; i < CP210X_PID_COUNT; i++) {
if (cp210x_vid_pid_list[i][0] == vid && cp210x_vid_pid_list[i][1] == pid) {
return cp210x_open(daddr, itf_desc, max_len);
}
}
#endif
}
#endif
return false;
}
static void set_config_complete(cdch_interface_t * p_cdc, uint8_t idx, uint8_t itf_num) {
if (tuh_cdc_mount_cb) tuh_cdc_mount_cb(idx);
// Prepare for incoming data
tu_edpt_stream_read_xfer(&p_cdc->stream.rx);
// notify usbh that driver enumeration is complete
usbh_driver_set_config_complete(p_cdc->daddr, itf_num);
}
bool cdch_set_config(uint8_t daddr, uint8_t itf_num)
{
tusb_control_request_t request;
request.wIndex = tu_htole16((uint16_t) itf_num);
// fake transfer to kick-off process
tuh_xfer_t xfer;
xfer.daddr = daddr;
xfer.result = XFER_RESULT_SUCCESS;
xfer.setup = &request;
xfer.user_data = 0; // initial state
uint8_t const idx = tuh_cdc_itf_get_index(daddr, itf_num);
cdch_interface_t * p_cdc = get_itf(idx);
TU_ASSERT(p_cdc && p_cdc->serial_drid < SERIAL_DRIVER_COUNT);
serial_drivers[p_cdc->serial_drid].process_set_config(&xfer);
return true;
}
//--------------------------------------------------------------------+
// ACM
//--------------------------------------------------------------------+
enum {
CONFIG_ACM_SET_CONTROL_LINE_STATE = 0,
CONFIG_ACM_SET_LINE_CODING,
CONFIG_ACM_COMPLETE,
};
static bool acm_open(uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len)
{
uint8_t const * p_desc_end = ((uint8_t const*) itf_desc) + max_len;
cdch_interface_t * p_cdc = make_new_itf(daddr, itf_desc);
TU_VERIFY(p_cdc);
p_cdc->serial_drid = SERIAL_DRIVER_ACM;
//------------- Control Interface -------------//
uint8_t const * p_desc = tu_desc_next(itf_desc);
// Communication Functional Descriptors
while( (p_desc < p_desc_end) && (TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc)) )
{
if ( CDC_FUNC_DESC_ABSTRACT_CONTROL_MANAGEMENT == cdc_functional_desc_typeof(p_desc) )
{
// save ACM bmCapabilities
p_cdc->acm_capability = ((cdc_desc_func_acm_t const *) p_desc)->bmCapabilities;
}
p_desc = tu_desc_next(p_desc);
}
// Open notification endpoint of control interface if any
if (itf_desc->bNumEndpoints == 1)
{
TU_ASSERT(TUSB_DESC_ENDPOINT == tu_desc_type(p_desc));
tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) p_desc;
TU_ASSERT( tuh_edpt_open(daddr, desc_ep) );
p_cdc->ep_notif = desc_ep->bEndpointAddress;
p_desc = tu_desc_next(p_desc);
}
//------------- Data Interface (if any) -------------//
if ( (TUSB_DESC_INTERFACE == tu_desc_type(p_desc)) &&
(TUSB_CLASS_CDC_DATA == ((tusb_desc_interface_t const *) p_desc)->bInterfaceClass) )
{
// next to endpoint descriptor
p_desc = tu_desc_next(p_desc);
// data endpoints expected to be in pairs
TU_ASSERT(open_ep_stream_pair(p_cdc, (tusb_desc_endpoint_t const *) p_desc));
}
return true;
}
static void acm_process_config(tuh_xfer_t* xfer)
{
uintptr_t const state = xfer->user_data;
uint8_t const itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
uint8_t const idx = tuh_cdc_itf_get_index(xfer->daddr, itf_num);
cdch_interface_t * p_cdc = get_itf(idx);
TU_ASSERT(p_cdc, );
switch(state)
{
case CONFIG_ACM_SET_CONTROL_LINE_STATE:
#if CFG_TUH_CDC_LINE_CONTROL_ON_ENUM
if (p_cdc->acm_capability.support_line_request)
{
TU_ASSERT(acm_set_control_line_state(p_cdc, CFG_TUH_CDC_LINE_CONTROL_ON_ENUM, acm_process_config,
CONFIG_ACM_SET_LINE_CODING), );
break;
}
#endif
TU_ATTR_FALLTHROUGH;
case CONFIG_ACM_SET_LINE_CODING:
#ifdef CFG_TUH_CDC_LINE_CODING_ON_ENUM
if (p_cdc->acm_capability.support_line_request)
{
cdc_line_coding_t line_coding = CFG_TUH_CDC_LINE_CODING_ON_ENUM;
TU_ASSERT(acm_set_line_coding(p_cdc, &line_coding, acm_process_config, CONFIG_ACM_COMPLETE), );
break;
}
#endif
TU_ATTR_FALLTHROUGH;
case CONFIG_ACM_COMPLETE:
// itf_num+1 to account for data interface as well
set_config_complete(p_cdc, idx, itf_num+1);
break;
default: break;
}
}
static bool acm_set_control_line_state(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_VERIFY(p_cdc->acm_capability.support_line_request);
TU_LOG_DRV("CDC ACM Set Control Line State\r\n");
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
},
.bRequest = CDC_REQUEST_SET_CONTROL_LINE_STATE,
.wValue = tu_htole16(line_state),
.wIndex = tu_htole16((uint16_t) p_cdc->bInterfaceNumber),
.wLength = 0
};
p_cdc->user_control_cb = complete_cb;
tuh_xfer_t xfer = {
.daddr = p_cdc->daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb ? cdch_internal_control_complete : NULL, // complete_cb is NULL for sync call
.user_data = user_data
};
TU_ASSERT(tuh_control_xfer(&xfer));
return true;
}
static bool acm_set_line_coding(cdch_interface_t* p_cdc, cdc_line_coding_t const* line_coding, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_DRV("CDC ACM Set Line Conding\r\n");
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_CLASS,
.direction = TUSB_DIR_OUT
},
.bRequest = CDC_REQUEST_SET_LINE_CODING,
.wValue = 0,
.wIndex = tu_htole16(p_cdc->bInterfaceNumber),
.wLength = tu_htole16(sizeof(cdc_line_coding_t))
};
// use usbh enum buf to hold line coding since user line_coding variable does not live long enough
uint8_t* enum_buf = usbh_get_enum_buf();
memcpy(enum_buf, line_coding, sizeof(cdc_line_coding_t));
p_cdc->user_control_cb = complete_cb;
tuh_xfer_t xfer = {
.daddr = p_cdc->daddr,
.ep_addr = 0,
.setup = &request,
.buffer = enum_buf,
.complete_cb = complete_cb ? cdch_internal_control_complete : NULL, // complete_cb is NULL for sync call
.user_data = user_data
};
TU_ASSERT(tuh_control_xfer(&xfer));
return true;
}
static bool acm_set_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_VERIFY(p_cdc->acm_capability.support_line_request);
cdc_line_coding_t line_coding = p_cdc->line_coding;
line_coding.bit_rate = baudrate;
return acm_set_line_coding(p_cdc, &line_coding, complete_cb, user_data);
}
//--------------------------------------------------------------------+
// FTDI
//--------------------------------------------------------------------+
#if CFG_TUH_CDC_FTDI
enum {
CONFIG_FTDI_RESET = 0,
CONFIG_FTDI_MODEM_CTRL,
CONFIG_FTDI_SET_BAUDRATE,
CONFIG_FTDI_SET_DATA,
CONFIG_FTDI_COMPLETE
};
static bool ftdi_open(uint8_t daddr, const tusb_desc_interface_t *itf_desc, uint16_t max_len) {
// FTDI Interface includes 1 vendor interface + 2 bulk endpoints
TU_VERIFY(itf_desc->bInterfaceSubClass == 0xff && itf_desc->bInterfaceProtocol == 0xff && itf_desc->bNumEndpoints == 2);
TU_VERIFY(sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t) <= max_len);
cdch_interface_t * p_cdc = make_new_itf(daddr, itf_desc);
TU_VERIFY(p_cdc);
TU_LOG_DRV("FTDI opened\r\n");
p_cdc->serial_drid = SERIAL_DRIVER_FTDI;
// endpoint pair
tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(itf_desc);
// data endpoints expected to be in pairs
return open_ep_stream_pair(p_cdc, desc_ep);
}
// set request without data
static bool ftdi_sio_set_request(cdch_interface_t* p_cdc, uint8_t command, uint16_t value, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_VENDOR,
.direction = TUSB_DIR_OUT
},
.bRequest = command,
.wValue = tu_htole16(value),
.wIndex = 0,
.wLength = 0
};
tuh_xfer_t xfer = {
.daddr = p_cdc->daddr,
.ep_addr = 0,
.setup = &request,
.buffer = NULL,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
}
static bool ftdi_sio_reset(cdch_interface_t* p_cdc, tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
return ftdi_sio_set_request(p_cdc, FTDI_SIO_RESET, FTDI_SIO_RESET_SIO, complete_cb, user_data);
}
static bool ftdi_sio_set_modem_ctrl(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
TU_LOG_DRV("CDC FTDI Set Control Line State\r\n");
p_cdc->user_control_cb = complete_cb;
TU_ASSERT(ftdi_sio_set_request(p_cdc, FTDI_SIO_MODEM_CTRL, 0x0300 | line_state,
complete_cb ? cdch_internal_control_complete : NULL, user_data));
return true;
}
static uint32_t ftdi_232bm_baud_base_to_divisor(uint32_t baud, uint32_t base)
{
const uint8_t divfrac[8] = { 0, 3, 2, 4, 1, 5, 6, 7 };
uint32_t divisor;
/* divisor shifted 3 bits to the left */
uint32_t divisor3 = base / (2 * baud);
divisor = (divisor3 >> 3);
divisor |= (uint32_t) divfrac[divisor3 & 0x7] << 14;
/* Deal with special cases for highest baud rates. */
if (divisor == 1) { /* 1.0 */
divisor = 0;
}
else if (divisor == 0x4001) { /* 1.5 */
divisor = 1;
}
return divisor;
}
static uint32_t ftdi_232bm_baud_to_divisor(uint32_t baud)
{
return ftdi_232bm_baud_base_to_divisor(baud, 48000000u);
}
static bool ftdi_sio_set_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
uint16_t const divisor = (uint16_t) ftdi_232bm_baud_to_divisor(baudrate);
TU_LOG_DRV("CDC FTDI Set BaudRate = %lu, divisor = 0x%04x\r\n", baudrate, divisor);
p_cdc->user_control_cb = complete_cb;
_ftdi_requested_baud = baudrate;
TU_ASSERT(ftdi_sio_set_request(p_cdc, FTDI_SIO_SET_BAUD_RATE, divisor,
complete_cb ? cdch_internal_control_complete : NULL, user_data));
return true;
}
static void ftdi_process_config(tuh_xfer_t* xfer) {
uintptr_t const state = xfer->user_data;
uint8_t const itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
uint8_t const idx = tuh_cdc_itf_get_index(xfer->daddr, itf_num);
cdch_interface_t * p_cdc = get_itf(idx);
TU_ASSERT(p_cdc, );
switch(state) {
// Note may need to read FTDI eeprom
case CONFIG_FTDI_RESET:
TU_ASSERT(ftdi_sio_reset(p_cdc, ftdi_process_config, CONFIG_FTDI_MODEM_CTRL),);
break;
case CONFIG_FTDI_MODEM_CTRL:
#if CFG_TUH_CDC_LINE_CONTROL_ON_ENUM
TU_ASSERT(
ftdi_sio_set_modem_ctrl(p_cdc, CFG_TUH_CDC_LINE_CONTROL_ON_ENUM, ftdi_process_config, CONFIG_FTDI_SET_BAUDRATE),);
break;
#else
TU_ATTR_FALLTHROUGH;
#endif
case CONFIG_FTDI_SET_BAUDRATE: {
#ifdef CFG_TUH_CDC_LINE_CODING_ON_ENUM
cdc_line_coding_t line_coding = CFG_TUH_CDC_LINE_CODING_ON_ENUM;
TU_ASSERT(ftdi_sio_set_baudrate(p_cdc, line_coding.bit_rate, ftdi_process_config, CONFIG_FTDI_SET_DATA),);
break;
#else
TU_ATTR_FALLTHROUGH;
#endif
}
case CONFIG_FTDI_SET_DATA: {
#if 0 // TODO set data format
#ifdef CFG_TUH_CDC_LINE_CODING_ON_ENUM
cdc_line_coding_t line_coding = CFG_TUH_CDC_LINE_CODING_ON_ENUM;
TU_ASSERT(ftdi_sio_set_data(p_cdc, process_ftdi_config, CONFIG_FTDI_COMPLETE),);
break;
#endif
#endif
TU_ATTR_FALLTHROUGH;
}
case CONFIG_FTDI_COMPLETE:
set_config_complete(p_cdc, idx, itf_num);
break;
default:
break;
}
}
#endif
//--------------------------------------------------------------------+
// CP210x
//--------------------------------------------------------------------+
#if CFG_TUH_CDC_CP210X
enum {
CONFIG_CP210X_IFC_ENABLE = 0,
CONFIG_CP210X_SET_BAUDRATE,
CONFIG_CP210X_SET_LINE_CTL,
CONFIG_CP210X_SET_DTR_RTS,
CONFIG_CP210X_COMPLETE
};
static bool cp210x_open(uint8_t daddr, tusb_desc_interface_t const *itf_desc, uint16_t max_len) {
// CP210x Interface includes 1 vendor interface + 2 bulk endpoints
TU_VERIFY(itf_desc->bInterfaceSubClass == 0 && itf_desc->bInterfaceProtocol == 0 && itf_desc->bNumEndpoints == 2);
TU_VERIFY(sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t) <= max_len);
cdch_interface_t * p_cdc = make_new_itf(daddr, itf_desc);
TU_VERIFY(p_cdc);
TU_LOG_DRV("CP210x opened\r\n");
p_cdc->serial_drid = SERIAL_DRIVER_CP210X;
// endpoint pair
tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(itf_desc);
// data endpoints expected to be in pairs
return open_ep_stream_pair(p_cdc, desc_ep);
}
static bool cp210x_set_request(cdch_interface_t* p_cdc, uint8_t command, uint16_t value, uint8_t* buffer, uint16_t length, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
tusb_control_request_t const request = {
.bmRequestType_bit = {
.recipient = TUSB_REQ_RCPT_INTERFACE,
.type = TUSB_REQ_TYPE_VENDOR,
.direction = TUSB_DIR_OUT
},
.bRequest = command,
.wValue = tu_htole16(value),
.wIndex = p_cdc->bInterfaceNumber,
.wLength = tu_htole16(length)
};
// use usbh enum buf since application variable does not live long enough
uint8_t* enum_buf = NULL;
if (buffer && length > 0) {
enum_buf = usbh_get_enum_buf();
tu_memcpy_s(enum_buf, CFG_TUH_ENUMERATION_BUFSIZE, buffer, length);
}
tuh_xfer_t xfer = {
.daddr = p_cdc->daddr,
.ep_addr = 0,
.setup = &request,
.buffer = enum_buf,
.complete_cb = complete_cb,
.user_data = user_data
};
return tuh_control_xfer(&xfer);
}
static bool cp210x_ifc_enable(cdch_interface_t* p_cdc, uint16_t enabled, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
return cp210x_set_request(p_cdc, CP210X_IFC_ENABLE, enabled, NULL, 0, complete_cb, user_data);
}
static bool cp210x_set_baudrate(cdch_interface_t* p_cdc, uint32_t baudrate, tuh_xfer_cb_t complete_cb, uintptr_t user_data) {
TU_LOG_DRV("CDC CP210x Set BaudRate = %lu\r\n", baudrate);
uint32_t baud_le = tu_htole32(baudrate);
p_cdc->user_control_cb = complete_cb;
return cp210x_set_request(p_cdc, CP210X_SET_BAUDRATE, 0, (uint8_t *) &baud_le, 4,
complete_cb ? cdch_internal_control_complete : NULL, user_data);
}
static bool cp210x_set_modem_ctrl(cdch_interface_t* p_cdc, uint16_t line_state, tuh_xfer_cb_t complete_cb, uintptr_t user_data)
{
TU_LOG_DRV("CDC CP210x Set Control Line State\r\n");
p_cdc->user_control_cb = complete_cb;
return cp210x_set_request(p_cdc, CP210X_SET_MHS, 0x0300 | line_state, NULL, 0,
complete_cb ? cdch_internal_control_complete : NULL, user_data);
}
static void cp210x_process_config(tuh_xfer_t* xfer) {
uintptr_t const state = xfer->user_data;
uint8_t const itf_num = (uint8_t) tu_le16toh(xfer->setup->wIndex);
uint8_t const idx = tuh_cdc_itf_get_index(xfer->daddr, itf_num);
cdch_interface_t *p_cdc = get_itf(idx);
TU_ASSERT(p_cdc,);
switch (state) {
case CONFIG_CP210X_IFC_ENABLE:
TU_ASSERT(cp210x_ifc_enable(p_cdc, 1, cp210x_process_config, CONFIG_CP210X_SET_BAUDRATE),);
break;
case CONFIG_CP210X_SET_BAUDRATE: {
#ifdef CFG_TUH_CDC_LINE_CODING_ON_ENUM
cdc_line_coding_t line_coding = CFG_TUH_CDC_LINE_CODING_ON_ENUM;
TU_ASSERT(cp210x_set_baudrate(p_cdc, line_coding.bit_rate, cp210x_process_config, CONFIG_CP210X_SET_LINE_CTL),);
break;
#else
TU_ATTR_FALLTHROUGH;
#endif
}
case CONFIG_CP210X_SET_LINE_CTL: {
#if defined(CFG_TUH_CDC_LINE_CODING_ON_ENUM) && 0 // skip for now
cdc_line_coding_t line_coding = CFG_TUH_CDC_LINE_CODING_ON_ENUM;
break;
#else
TU_ATTR_FALLTHROUGH;
#endif
}
case CONFIG_CP210X_SET_DTR_RTS:
#if CFG_TUH_CDC_LINE_CONTROL_ON_ENUM
TU_ASSERT(
cp210x_set_modem_ctrl(p_cdc, CFG_TUH_CDC_LINE_CONTROL_ON_ENUM, cp210x_process_config, CONFIG_CP210X_COMPLETE),);
break;
#else
TU_ATTR_FALLTHROUGH;
#endif
case CONFIG_CP210X_COMPLETE:
set_config_complete(p_cdc, idx, itf_num);
break;
default: break;
}
}
#endif
#endif