mirror of
https://github.com/django-helpdesk/django-helpdesk.git
synced 2024-12-12 18:00:45 +01:00
144 lines
4.4 KiB
Python
144 lines
4.4 KiB
Python
from django.db.models import Q
|
|
|
|
from model_utils import Choices
|
|
|
|
from base64 import b64encode
|
|
from base64 import b64decode
|
|
import json
|
|
|
|
|
|
def query_to_base64(query):
|
|
"""
|
|
Converts a query dict object to a base64-encoded bytes object.
|
|
"""
|
|
return b64encode(json.dumps(query).encode('UTF-8')).decode("ascii")
|
|
|
|
|
|
def query_from_base64(b64data):
|
|
"""
|
|
Converts base64-encoded bytes object back to a query dict object.
|
|
"""
|
|
query = {'search_string': ''}
|
|
query.update(json.loads(b64decode(b64data).decode('utf-8')))
|
|
if query['search_string'] is None:
|
|
query['search_string'] = ''
|
|
return query
|
|
|
|
|
|
def query_to_dict(results, descriptions):
|
|
"""
|
|
Replacement method for cursor.dictfetchall() as that method no longer
|
|
exists in psycopg2, and I'm guessing in other backends too.
|
|
|
|
Converts the results of a raw SQL query into a list of dictionaries, suitable
|
|
for use in templates etc.
|
|
"""
|
|
|
|
output = []
|
|
for data in results:
|
|
row = {}
|
|
i = 0
|
|
for column in descriptions:
|
|
row[column[0]] = data[i]
|
|
i += 1
|
|
|
|
output.append(row)
|
|
return output
|
|
|
|
|
|
def apply_query(queryset, params):
|
|
"""
|
|
Apply a dict-based set of filters & parameters to a queryset.
|
|
|
|
queryset is a Django queryset, eg MyModel.objects.all() or
|
|
MyModel.objects.filter(user=request.user)
|
|
|
|
params is a dictionary that contains the following:
|
|
filtering: A dict of Django ORM filters, eg:
|
|
{'user__id__in': [1, 3, 103], 'title__contains': 'foo'}
|
|
|
|
search_string: A freetext search string
|
|
|
|
sorting: The name of the column to sort by
|
|
"""
|
|
for key in params['filtering'].keys():
|
|
filter = {key: params['filtering'][key]}
|
|
queryset = queryset.filter(**filter)
|
|
|
|
search = params.get('search_string', '')
|
|
if search:
|
|
qset = (
|
|
Q(title__icontains=search) |
|
|
Q(description__icontains=search) |
|
|
Q(resolution__icontains=search) |
|
|
Q(submitter_email__icontains=search) |
|
|
Q(ticketcustomfieldvalue__value__icontains=search)
|
|
)
|
|
|
|
queryset = queryset.filter(qset)
|
|
|
|
sorting = params.get('sorting', None)
|
|
if sorting:
|
|
sortreverse = params.get('sortreverse', None)
|
|
if sortreverse:
|
|
sorting = "-%s" % sorting
|
|
queryset = queryset.order_by(sorting)
|
|
|
|
return queryset
|
|
|
|
|
|
ORDER_COLUMN_CHOICES = Choices(
|
|
('0', 'id'),
|
|
('2', 'priority'),
|
|
('3', 'title'),
|
|
('4', 'queue'),
|
|
('5', 'status'),
|
|
('6', 'created'),
|
|
('7', 'due_date'),
|
|
('8', 'assigned_to')
|
|
)
|
|
|
|
|
|
def query_tickets_by_args(objects, order_by, **kwargs):
|
|
"""
|
|
This function takes in a list of ticket objects from the views and throws it
|
|
to the datatables on ticket_list.html. If a search string was entered, this
|
|
function filters existing dataset on search string and returns a filtered
|
|
filtered list. The `draw`, `length` etc parameters are for datatables to
|
|
display meta data on the table contents. The returning queryset is passed
|
|
to a Serializer called DatatablesTicketSerializer in serializers.py.
|
|
"""
|
|
draw = int(kwargs.get('draw', None)[0])
|
|
length = int(kwargs.get('length', None)[0])
|
|
start = int(kwargs.get('start', None)[0])
|
|
search_value = kwargs.get('search[value]', None)[0]
|
|
order_column = kwargs.get('order[0][column]', None)[0]
|
|
order = kwargs.get('order[0][dir]', None)[0]
|
|
|
|
order_column = ORDER_COLUMN_CHOICES[order_column]
|
|
# django orm '-' -> desc
|
|
if order == 'desc':
|
|
order_column = '-' + order_column
|
|
|
|
queryset = objects.all().order_by(order_by)
|
|
total = queryset.count()
|
|
|
|
if search_value:
|
|
queryset = queryset.filter(Q(id__icontains=search_value) |
|
|
Q(priority__icontains=search_value) |
|
|
Q(title__icontains=search_value) |
|
|
Q(queue__title__icontains=search_value) |
|
|
Q(status__icontains=search_value) |
|
|
Q(created__icontains=search_value) |
|
|
Q(due_date__icontains=search_value) |
|
|
Q(assigned_to__email__icontains=search_value))
|
|
|
|
count = queryset.count()
|
|
queryset = queryset.order_by(order_column)[start:start + length]
|
|
return {
|
|
'items': queryset,
|
|
'count': count,
|
|
'total': total,
|
|
'draw': draw
|
|
}
|