2022-12-07 17:45:35 +01:00
|
|
|
import threading
|
|
|
|
import queue
|
2022-12-08 17:09:09 +01:00
|
|
|
import time
|
|
|
|
import json
|
|
|
|
import os
|
|
|
|
import base64
|
|
|
|
import re
|
2022-12-07 17:45:35 +01:00
|
|
|
|
2022-12-08 09:20:46 +01:00
|
|
|
from sd_internal import device_manager, model_manager
|
2022-12-08 17:09:09 +01:00
|
|
|
from sd_internal import Request, Response, Image as ResponseImage, UserInitiatedStop
|
2022-12-07 17:45:35 +01:00
|
|
|
|
2022-12-08 17:09:09 +01:00
|
|
|
from modules import model_loader, image_generator, image_utils, image_filters
|
2022-12-07 17:45:35 +01:00
|
|
|
|
|
|
|
thread_data = threading.local()
|
|
|
|
'''
|
|
|
|
runtime data (bound locally to this thread), for e.g. device, references to loaded models, optimization flags etc
|
|
|
|
'''
|
|
|
|
|
2022-12-08 17:09:09 +01:00
|
|
|
filename_regex = re.compile('[^a-zA-Z0-9]')
|
|
|
|
|
2022-12-07 17:45:35 +01:00
|
|
|
def init(device):
|
|
|
|
'''
|
|
|
|
Initializes the fields that will be bound to this runtime's thread_data, and sets the current torch device
|
|
|
|
'''
|
|
|
|
thread_data.stop_processing = False
|
|
|
|
thread_data.temp_images = {}
|
|
|
|
|
|
|
|
thread_data.models = {}
|
2022-12-08 09:20:46 +01:00
|
|
|
thread_data.model_paths = {}
|
2022-12-07 17:45:35 +01:00
|
|
|
|
|
|
|
thread_data.device = None
|
|
|
|
thread_data.device_name = None
|
|
|
|
thread_data.precision = 'autocast'
|
|
|
|
thread_data.vram_optimizations = ('TURBO', 'MOVE_MODELS')
|
|
|
|
|
|
|
|
device_manager.device_init(thread_data, device)
|
|
|
|
|
2022-12-08 17:09:09 +01:00
|
|
|
init_and_load_default_models()
|
2022-12-07 17:45:35 +01:00
|
|
|
|
|
|
|
def destroy():
|
|
|
|
model_loader.unload_sd_model(thread_data)
|
|
|
|
model_loader.unload_gfpgan_model(thread_data)
|
|
|
|
model_loader.unload_realesrgan_model(thread_data)
|
2022-12-09 08:59:06 +01:00
|
|
|
model_loader.unload_hypernetwork_model(thread_data)
|
2022-12-07 17:45:35 +01:00
|
|
|
|
2022-12-08 17:09:09 +01:00
|
|
|
def init_and_load_default_models():
|
|
|
|
# init default model paths
|
|
|
|
thread_data.model_paths['stable-diffusion'] = model_manager.resolve_sd_model_to_use()
|
|
|
|
thread_data.model_paths['vae'] = model_manager.resolve_vae_model_to_use()
|
|
|
|
thread_data.model_paths['hypernetwork'] = model_manager.resolve_hypernetwork_model_to_use()
|
|
|
|
thread_data.model_paths['gfpgan'] = model_manager.resolve_gfpgan_model_to_use()
|
|
|
|
thread_data.model_paths['realesrgan'] = model_manager.resolve_realesrgan_model_to_use()
|
2022-12-08 09:20:46 +01:00
|
|
|
|
2022-12-08 17:09:09 +01:00
|
|
|
# load mandatory models
|
2022-12-08 09:20:46 +01:00
|
|
|
model_loader.load_sd_model(thread_data)
|
|
|
|
|
2022-12-08 17:09:09 +01:00
|
|
|
def reload_models_if_necessary(req: Request):
|
|
|
|
if model_manager.is_sd_model_reload_necessary(thread_data, req):
|
|
|
|
thread_data.model_paths['stable-diffusion'] = req.use_stable_diffusion_model
|
|
|
|
thread_data.model_paths['vae'] = req.use_vae_model
|
|
|
|
|
|
|
|
model_loader.load_sd_model(thread_data)
|
|
|
|
|
2022-12-09 08:59:06 +01:00
|
|
|
if thread_data.model_paths.get('hypernetwork') != req.use_hypernetwork_model:
|
|
|
|
thread_data.model_paths['hypernetwork'] = req.use_hypernetwork_model
|
|
|
|
|
|
|
|
if thread_data.model_paths['hypernetwork'] is not None:
|
|
|
|
model_loader.load_hypernetwork_model(thread_data)
|
|
|
|
else:
|
|
|
|
model_loader.unload_hypernetwork_model(thread_data)
|
2022-12-08 17:09:09 +01:00
|
|
|
|
|
|
|
def make_images(req: Request, data_queue: queue.Queue, task_temp_images: list, step_callback):
|
|
|
|
images, user_stopped = generate_images(req, data_queue, task_temp_images, step_callback)
|
|
|
|
images = apply_filters(req, images, user_stopped)
|
|
|
|
|
|
|
|
save_images(req, images)
|
|
|
|
|
|
|
|
return Response(req, images=construct_response(req, images))
|
|
|
|
|
|
|
|
def generate_images(req: Request, data_queue: queue.Queue, task_temp_images: list, step_callback):
|
|
|
|
thread_data.temp_images.clear()
|
|
|
|
|
|
|
|
image_generator.on_image_step = make_step_callback(req, data_queue, task_temp_images, step_callback)
|
|
|
|
|
2022-12-07 17:45:35 +01:00
|
|
|
try:
|
|
|
|
images = image_generator.make_image(context=thread_data, args=get_mk_img_args(req))
|
2022-12-08 17:09:09 +01:00
|
|
|
user_stopped = False
|
2022-12-07 17:45:35 +01:00
|
|
|
except UserInitiatedStop:
|
2022-12-08 17:09:09 +01:00
|
|
|
images = []
|
|
|
|
user_stopped = True
|
|
|
|
if not hasattr(thread_data, 'partial_x_samples') or thread_data.partial_x_samples is None:
|
|
|
|
return images
|
|
|
|
for i in range(req.num_outputs):
|
|
|
|
images[i] = image_utils.latent_to_img(thread_data, thread_data.partial_x_samples[i].unsqueeze(0))
|
|
|
|
|
|
|
|
del thread_data.partial_x_samples
|
|
|
|
finally:
|
|
|
|
model_loader.gc(thread_data)
|
|
|
|
|
|
|
|
images = [(image, req.seed + i, False) for i, image in enumerate(images)]
|
|
|
|
|
|
|
|
return images, user_stopped
|
|
|
|
|
|
|
|
def apply_filters(req: Request, images: list, user_stopped):
|
|
|
|
if user_stopped or (req.use_face_correction is None and req.use_upscale is None):
|
|
|
|
return images
|
|
|
|
|
|
|
|
filters = []
|
|
|
|
if req.use_face_correction.startswith('GFPGAN'): filters.append((image_filters.apply_gfpgan, model_manager.resolve_gfpgan_model_to_use(req.use_face_correction)))
|
|
|
|
if req.use_upscale.startswith('RealESRGAN'): filters.append((image_filters.apply_realesrgan, model_manager.resolve_realesrgan_model_to_use(req.use_upscale)))
|
|
|
|
|
|
|
|
filtered_images = []
|
|
|
|
for img, seed, _ in images:
|
|
|
|
for filter_fn, filter_model_path in filters:
|
|
|
|
img = filter_fn(thread_data, img, filter_model_path)
|
|
|
|
|
|
|
|
filtered_images.append((img, seed, True))
|
|
|
|
|
|
|
|
if not req.show_only_filtered_image:
|
|
|
|
filtered_images = images + filtered_images
|
|
|
|
|
|
|
|
return filtered_images
|
|
|
|
|
|
|
|
def save_images(req: Request, images: list):
|
|
|
|
if req.save_to_disk_path is None:
|
|
|
|
return
|
|
|
|
|
|
|
|
def get_image_id(i):
|
|
|
|
img_id = base64.b64encode(int(time.time()+i).to_bytes(8, 'big')).decode() # Generate unique ID based on time.
|
|
|
|
img_id = img_id.translate({43:None, 47:None, 61:None})[-8:] # Remove + / = and keep last 8 chars.
|
|
|
|
return img_id
|
|
|
|
|
|
|
|
def get_image_basepath(i):
|
|
|
|
session_out_path = os.path.join(req.save_to_disk_path, filename_regex.sub('_', req.session_id))
|
|
|
|
os.makedirs(session_out_path, exist_ok=True)
|
|
|
|
prompt_flattened = filename_regex.sub('_', req.prompt)[:50]
|
|
|
|
return os.path.join(session_out_path, f"{prompt_flattened}_{get_image_id(i)}")
|
|
|
|
|
|
|
|
for i, img_data in enumerate(images):
|
|
|
|
img, seed, filtered = img_data
|
|
|
|
img_path = get_image_basepath(i)
|
|
|
|
|
|
|
|
if not filtered or req.show_only_filtered_image:
|
|
|
|
img_metadata_path = img_path + '.txt'
|
|
|
|
metadata = req.json()
|
|
|
|
metadata['seed'] = seed
|
|
|
|
with open(img_metadata_path, 'w', encoding='utf-8') as f:
|
|
|
|
f.write(metadata)
|
|
|
|
|
|
|
|
img_path += '_filtered' if filtered else ''
|
|
|
|
img_path += '.' + req.output_format
|
|
|
|
img.save(img_path, quality=req.output_quality)
|
|
|
|
|
|
|
|
def construct_response(req: Request, images: list):
|
|
|
|
return [
|
|
|
|
ResponseImage(
|
|
|
|
data=image_utils.img_to_base64_str(img, req.output_format, req.output_quality),
|
|
|
|
seed=seed
|
|
|
|
) for img, seed, _ in images
|
|
|
|
]
|
2022-12-07 17:45:35 +01:00
|
|
|
|
|
|
|
def get_mk_img_args(req: Request):
|
|
|
|
args = req.json()
|
|
|
|
|
2022-12-08 17:09:09 +01:00
|
|
|
args['init_image'] = image_utils.base64_str_to_img(req.init_image) if req.init_image is not None else None
|
|
|
|
args['mask'] = image_utils.base64_str_to_img(req.mask) if req.mask is not None else None
|
2022-12-07 17:45:35 +01:00
|
|
|
|
|
|
|
return args
|
|
|
|
|
2022-12-08 17:09:09 +01:00
|
|
|
def make_step_callback(req: Request, data_queue: queue.Queue, task_temp_images: list, step_callback):
|
|
|
|
n_steps = req.num_inference_steps if req.init_image is None else int(req.num_inference_steps * req.prompt_strength)
|
|
|
|
last_callback_time = -1
|
|
|
|
|
|
|
|
def update_temp_img(req, x_samples, task_temp_images: list):
|
|
|
|
partial_images = []
|
|
|
|
for i in range(req.num_outputs):
|
|
|
|
img = image_utils.latent_to_img(thread_data, x_samples[i].unsqueeze(0))
|
|
|
|
buf = image_utils.img_to_buffer(img, output_format='JPEG')
|
|
|
|
|
|
|
|
del img
|
|
|
|
|
|
|
|
thread_data.temp_images[f'{req.request_id}/{i}'] = buf
|
|
|
|
task_temp_images[i] = buf
|
|
|
|
partial_images.append({'path': f'/image/tmp/{req.request_id}/{i}'})
|
|
|
|
return partial_images
|
|
|
|
|
|
|
|
def on_image_step(x_samples, i):
|
|
|
|
nonlocal last_callback_time
|
|
|
|
|
|
|
|
thread_data.partial_x_samples = x_samples
|
|
|
|
step_time = time.time() - last_callback_time if last_callback_time != -1 else -1
|
|
|
|
last_callback_time = time.time()
|
|
|
|
|
|
|
|
progress = {"step": i, "step_time": step_time, "total_steps": n_steps}
|
|
|
|
|
|
|
|
if req.stream_image_progress and i % 5 == 0:
|
|
|
|
progress['output'] = update_temp_img(req, x_samples, task_temp_images)
|
|
|
|
|
|
|
|
data_queue.put(json.dumps(progress))
|
|
|
|
|
|
|
|
step_callback()
|
|
|
|
|
|
|
|
if thread_data.stop_processing:
|
|
|
|
raise UserInitiatedStop("User requested that we stop processing")
|
2022-12-07 17:45:35 +01:00
|
|
|
|
2022-12-08 17:09:09 +01:00
|
|
|
return on_image_step
|