easydiffusion/ui/sd_internal/runtime.py

683 lines
24 KiB
Python
Raw Normal View History

import json
import os, re
import traceback
import torch
import numpy as np
from omegaconf import OmegaConf
2022-09-15 14:24:03 +02:00
from PIL import Image, ImageOps
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import nullcontext
from einops import rearrange, repeat
from ldm.util import instantiate_from_config
from optimizedSD.optimUtils import split_weighted_subprompts
from transformers import logging
from gfpgan import GFPGANer
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import uuid
logging.set_verbosity_error()
# consts
config_yaml = "optimizedSD/v1-inference.yaml"
filename_regex = re.compile('[^a-zA-Z0-9]')
# api stuff
from . import Request, Response, Image as ResponseImage
import base64
from io import BytesIO
2022-09-16 18:02:08 +02:00
#from colorama import Fore
# local
stop_processing = False
2022-09-14 18:59:42 +02:00
temp_images = {}
ckpt_file = None
gfpgan_file = None
real_esrgan_file = None
model = None
modelCS = None
modelFS = None
model_gfpgan = None
model_real_esrgan = None
model_is_half = False
model_fs_is_half = False
device = None
unet_bs = 1
precision = 'autocast'
sampler_plms = None
sampler_ddim = None
has_valid_gpu = False
force_full_precision = False
try:
gpu = torch.cuda.current_device()
gpu_name = torch.cuda.get_device_name(gpu)
2022-09-12 07:42:41 +02:00
print('GPU detected: ', gpu_name)
force_full_precision = ('nvidia' in gpu_name.lower() or 'geforce' in gpu_name.lower()) and (' 1660' in gpu_name or ' 1650' in gpu_name) # otherwise these NVIDIA cards create green images
if force_full_precision:
print('forcing full precision on NVIDIA 16xx cards, to avoid green images. GPU detected: ', gpu_name)
mem_free, mem_total = torch.cuda.mem_get_info(gpu)
mem_total /= float(10**9)
if mem_total < 3.0:
print("GPUs with less than 3 GB of VRAM are not compatible with Stable Diffusion")
raise Exception()
has_valid_gpu = True
except:
print('WARNING: No compatible GPU found. Using the CPU, but this will be very slow!')
pass
def load_model_ckpt(ckpt_to_use, device_to_use='cuda', turbo=False, unet_bs_to_use=1, precision_to_use='autocast'):
global ckpt_file, model, modelCS, modelFS, model_is_half, device, unet_bs, precision, model_fs_is_half
device = device_to_use if has_valid_gpu else 'cpu'
precision = precision_to_use if not force_full_precision else 'full'
unet_bs = unet_bs_to_use
unload_model()
if device == 'cpu':
precision = 'full'
sd = load_model_from_config(f"{ckpt_to_use}.ckpt")
li, lo = [], []
for key, value in sd.items():
sp = key.split(".")
if (sp[0]) == "model":
if "input_blocks" in sp:
li.append(key)
elif "middle_block" in sp:
li.append(key)
elif "time_embed" in sp:
li.append(key)
else:
lo.append(key)
for key in li:
sd["model1." + key[6:]] = sd.pop(key)
for key in lo:
sd["model2." + key[6:]] = sd.pop(key)
config = OmegaConf.load(f"{config_yaml}")
model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.eval()
model.cdevice = device
model.unet_bs = unet_bs
model.turbo = turbo
modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.eval()
modelCS.cond_stage_model.device = device
modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
modelFS.eval()
del sd
if device != "cpu" and precision == "autocast":
model.half()
modelCS.half()
modelFS.half()
model_is_half = True
model_fs_is_half = True
else:
model_is_half = False
model_fs_is_half = False
ckpt_file = ckpt_to_use
print('loaded ', ckpt_file, 'to', device, 'precision', precision)
def unload_model():
global model, modelCS, modelFS
if model is not None:
del model
del modelCS
del modelFS
model = None
modelCS = None
modelFS = None
def load_model_gfpgan(gfpgan_to_use):
global gfpgan_file, model_gfpgan
if gfpgan_to_use is None:
return
gfpgan_file = gfpgan_to_use
model_path = gfpgan_to_use + ".pth"
if device == 'cpu':
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu'))
else:
model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cuda'))
print('loaded ', gfpgan_to_use, 'to', device, 'precision', precision)
def load_model_real_esrgan(real_esrgan_to_use):
global real_esrgan_file, model_real_esrgan
if real_esrgan_to_use is None:
return
real_esrgan_file = real_esrgan_to_use
model_path = real_esrgan_to_use + ".pth"
RealESRGAN_models = {
'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4),
'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
}
model_to_use = RealESRGAN_models[real_esrgan_to_use]
if device == 'cpu':
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=False) # cpu does not support half
model_real_esrgan.device = torch.device('cpu')
model_real_esrgan.model.to('cpu')
else:
model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=model_is_half)
model_real_esrgan.model.name = real_esrgan_to_use
print('loaded ', real_esrgan_to_use, 'to', device, 'precision', precision)
def mk_img(req: Request):
2022-09-21 18:23:25 +02:00
try:
yield from do_mk_img(req)
except Exception as e:
2022-09-22 14:34:11 +02:00
print(traceback.format_exc())
2022-09-21 18:23:25 +02:00
gc()
2022-09-22 14:34:11 +02:00
if device != "cpu":
modelFS.to("cpu")
modelCS.to("cpu")
model.model1.to("cpu")
model.model2.to("cpu")
gc()
2022-09-22 14:34:11 +02:00
yield json.dumps({
"status": 'failed',
"detail": str(e)
})
2022-09-21 18:23:25 +02:00
def do_mk_img(req: Request):
global ckpt_file
2022-09-21 18:23:25 +02:00
global model, modelCS, modelFS, device
global model_gfpgan, model_real_esrgan
global stop_processing
stop_processing = False
res = Response()
res.request = req
res.images = []
2022-09-14 18:59:42 +02:00
temp_images.clear()
# custom model support:
# the req.use_stable_diffusion_model needs to be a valid path
# to the ckpt file (without the extension).
needs_model_reload = False
2022-10-08 09:18:37 +02:00
ckpt_to_use = ckpt_file
if ckpt_to_use != req.use_stable_diffusion_model:
ckpt_to_use = req.use_stable_diffusion_model
needs_model_reload = True
model.turbo = req.turbo
if req.use_cpu:
if device != 'cpu':
device = 'cpu'
if model_is_half:
2022-10-08 09:18:37 +02:00
load_model_ckpt(ckpt_to_use, device)
needs_model_reload = False
load_model_gfpgan(gfpgan_file)
load_model_real_esrgan(real_esrgan_file)
else:
if has_valid_gpu:
prev_device = device
device = 'cuda'
if (precision == 'autocast' and (req.use_full_precision or not model_is_half)) or \
(precision == 'full' and not req.use_full_precision and not force_full_precision):
2022-10-08 09:18:37 +02:00
load_model_ckpt(ckpt_to_use, device, req.turbo, unet_bs, ('full' if req.use_full_precision else 'autocast'))
needs_model_reload = False
if prev_device != device:
load_model_gfpgan(gfpgan_file)
load_model_real_esrgan(real_esrgan_file)
if needs_model_reload:
2022-10-08 09:18:37 +02:00
load_model_ckpt(ckpt_to_use, device, req.turbo, unet_bs, precision)
if req.use_face_correction != gfpgan_file:
load_model_gfpgan(req.use_face_correction)
if req.use_upscale != real_esrgan_file:
load_model_real_esrgan(req.use_upscale)
model.cdevice = device
modelCS.cond_stage_model.device = device
opt_prompt = req.prompt
opt_seed = req.seed
opt_n_samples = req.num_outputs
opt_n_iter = 1
opt_scale = req.guidance_scale
opt_C = 4
opt_H = req.height
opt_W = req.width
opt_f = 8
opt_ddim_steps = req.num_inference_steps
opt_ddim_eta = 0.0
opt_strength = req.prompt_strength
opt_save_to_disk_path = req.save_to_disk_path
opt_init_img = req.init_image
opt_use_face_correction = req.use_face_correction
opt_use_upscale = req.use_upscale
opt_show_only_filtered = req.show_only_filtered_image
opt_format = req.output_format
opt_sampler_name = req.sampler
print(req.to_string(), '\n device', device)
print('\n\n Using precision:', precision)
seed_everything(opt_seed)
batch_size = opt_n_samples
prompt = opt_prompt
assert prompt is not None
data = [batch_size * [prompt]]
if precision == "autocast" and device != "cpu":
precision_scope = autocast
else:
precision_scope = nullcontext
2022-09-15 14:24:03 +02:00
mask = None
if req.init_image is None:
handler = _txt2img
init_latent = None
t_enc = None
else:
handler = _img2img
init_image = load_img(req.init_image, opt_W, opt_H)
init_image = init_image.to(device)
if device != "cpu" and precision == "autocast":
init_image = init_image.half()
modelFS.to(device)
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space
2022-09-15 14:24:03 +02:00
if req.mask is not None:
mask = load_mask(req.mask, opt_W, opt_H, init_latent.shape[2], init_latent.shape[3], True).to(device)
mask = mask[0][0].unsqueeze(0).repeat(4, 1, 1).unsqueeze(0)
mask = repeat(mask, '1 ... -> b ...', b=batch_size)
if device != "cpu" and precision == "autocast":
mask = mask.half()
move_fs_to_cpu()
assert 0. <= opt_strength <= 1., 'can only work with strength in [0.0, 1.0]'
t_enc = int(opt_strength * opt_ddim_steps)
print(f"target t_enc is {t_enc} steps")
if opt_save_to_disk_path is not None:
2022-09-14 18:59:42 +02:00
session_out_path = os.path.join(opt_save_to_disk_path, req.session_id)
os.makedirs(session_out_path, exist_ok=True)
else:
session_out_path = None
seeds = ""
with torch.no_grad():
for n in trange(opt_n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
with precision_scope("cuda"):
modelCS.to(device)
uc = None
if opt_scale != 1.0:
uc = modelCS.get_learned_conditioning(batch_size * [req.negative_prompt])
if isinstance(prompts, tuple):
prompts = list(prompts)
subprompts, weights = split_weighted_subprompts(prompts[0])
if len(subprompts) > 1:
c = torch.zeros_like(uc)
totalWeight = sum(weights)
# normalize each "sub prompt" and add it
for i in range(len(subprompts)):
weight = weights[i]
# if not skip_normalize:
weight = weight / totalWeight
c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight)
else:
c = modelCS.get_learned_conditioning(prompts)
2022-09-14 18:59:42 +02:00
modelFS.to(device)
partial_x_samples = None
def img_callback(x_samples, i):
nonlocal partial_x_samples
partial_x_samples = x_samples
if req.stream_progress_updates:
2022-09-23 10:08:33 +02:00
n_steps = opt_ddim_steps if req.init_image is None else t_enc
progress = {"step": i, "total_steps": n_steps}
2022-09-14 18:59:42 +02:00
if req.stream_image_progress and i % 5 == 0:
2022-09-14 18:59:42 +02:00
partial_images = []
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
x_sample = x_sample.astype(np.uint8)
img = Image.fromarray(x_sample)
buf = BytesIO()
img.save(buf, format='JPEG')
buf.seek(0)
2022-09-21 18:23:25 +02:00
del img, x_sample, x_samples_ddim
# don't delete x_samples, it is used in the code that called this callback
2022-09-14 18:59:42 +02:00
temp_images[str(req.session_id) + '/' + str(i)] = buf
partial_images.append({'path': f'/image/tmp/{req.session_id}/{i}'})
progress['output'] = partial_images
yield json.dumps(progress)
if stop_processing:
raise UserInitiatedStop("User requested that we stop processing")
# run the handler
try:
if handler == _txt2img:
x_samples = _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, None, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, opt_sampler_name)
else:
x_samples = _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask)
yield from x_samples
x_samples = partial_x_samples
except UserInitiatedStop:
if partial_x_samples is None:
continue
x_samples = partial_x_samples
print("saving images")
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c")
x_sample = x_sample.astype(np.uint8)
img = Image.fromarray(x_sample)
has_filters = (opt_use_face_correction is not None and opt_use_face_correction.startswith('GFPGAN')) or \
(opt_use_upscale is not None and opt_use_upscale.startswith('RealESRGAN'))
return_orig_img = not has_filters or not opt_show_only_filtered
if stop_processing:
return_orig_img = True
if opt_save_to_disk_path is not None:
prompt_flattened = filename_regex.sub('_', prompts[0])
prompt_flattened = prompt_flattened[:50]
img_id = str(uuid.uuid4())[-8:]
file_path = f"{prompt_flattened}_{img_id}"
img_out_path = os.path.join(session_out_path, f"{file_path}.{opt_format}")
meta_out_path = os.path.join(session_out_path, f"{file_path}.txt")
if return_orig_img:
save_image(img, img_out_path)
save_metadata(meta_out_path, prompts, opt_seed, opt_W, opt_H, opt_ddim_steps, opt_scale, opt_strength, opt_use_face_correction, opt_use_upscale, opt_sampler_name, req.negative_prompt, ckpt_file)
if return_orig_img:
img_data = img_to_base64_str(img, opt_format)
res_image_orig = ResponseImage(data=img_data, seed=opt_seed)
res.images.append(res_image_orig)
if opt_save_to_disk_path is not None:
res_image_orig.path_abs = img_out_path
2022-09-21 18:23:25 +02:00
del img
if has_filters and not stop_processing:
2022-09-15 14:24:03 +02:00
print('Applying filters..')
gc()
filters_applied = []
if opt_use_face_correction:
_, _, output = model_gfpgan.enhance(x_sample[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True)
x_sample = output[:,:,::-1]
filters_applied.append(opt_use_face_correction)
if opt_use_upscale:
output, _ = model_real_esrgan.enhance(x_sample[:,:,::-1])
x_sample = output[:,:,::-1]
filters_applied.append(opt_use_upscale)
filtered_image = Image.fromarray(x_sample)
filtered_img_data = img_to_base64_str(filtered_image, opt_format)
res_image_filtered = ResponseImage(data=filtered_img_data, seed=opt_seed)
res.images.append(res_image_filtered)
filters_applied = "_".join(filters_applied)
if opt_save_to_disk_path is not None:
filtered_img_out_path = os.path.join(session_out_path, f"{file_path}_{filters_applied}.{opt_format}")
save_image(filtered_image, filtered_img_out_path)
res_image_filtered.path_abs = filtered_img_out_path
2022-09-21 18:23:25 +02:00
del filtered_image
seeds += str(opt_seed) + ","
opt_seed += 1
move_fs_to_cpu()
2022-09-21 18:23:25 +02:00
gc()
del x_samples, x_samples_ddim, x_sample
print("memory_final = ", torch.cuda.memory_allocated() / 1e6)
2022-09-16 18:02:08 +02:00
print('Task completed')
2022-09-15 14:24:03 +02:00
yield json.dumps(res.json())
def save_image(img, img_out_path):
try:
img.save(img_out_path)
except:
print('could not save the file', traceback.format_exc())
def save_metadata(meta_out_path, prompts, opt_seed, opt_W, opt_H, opt_ddim_steps, opt_scale, opt_prompt_strength, opt_correct_face, opt_upscale, sampler_name, negative_prompt, ckpt_file):
metadata = f"{prompts[0]}\nWidth: {opt_W}\nHeight: {opt_H}\nSeed: {opt_seed}\nSteps: {opt_ddim_steps}\nGuidance Scale: {opt_scale}\nPrompt Strength: {opt_prompt_strength}\nUse Face Correction: {opt_correct_face}\nUse Upscaling: {opt_upscale}\nSampler: {sampler_name}\nNegative Prompt: {negative_prompt}\nStable Diffusion Model: {ckpt_file + '.ckpt'}"
try:
with open(meta_out_path, 'w') as f:
f.write(metadata)
except:
print('could not save the file', traceback.format_exc())
def _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, start_code, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, sampler_name):
shape = [opt_n_samples, opt_C, opt_H // opt_f, opt_W // opt_f]
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelCS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
if sampler_name == 'ddim':
model.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False)
samples_ddim = model.sample(
S=opt_ddim_steps,
conditioning=c,
seed=opt_seed,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt_scale,
unconditional_conditioning=uc,
eta=opt_ddim_eta,
x_T=start_code,
img_callback=img_callback,
2022-09-15 14:24:03 +02:00
mask=mask,
sampler = sampler_name,
)
yield from samples_ddim
def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask):
# encode (scaled latent)
z_enc = model.stochastic_encode(
init_latent,
torch.tensor([t_enc] * batch_size).to(device),
opt_seed,
opt_ddim_eta,
opt_ddim_steps,
)
2022-09-15 14:24:03 +02:00
x_T = None if mask is None else init_latent
# decode it
samples_ddim = model.sample(
t_enc,
c,
z_enc,
unconditional_guidance_scale=opt_scale,
unconditional_conditioning=uc,
img_callback=img_callback,
2022-09-15 14:24:03 +02:00
mask=mask,
x_T=x_T,
sampler = 'ddim'
)
yield from samples_ddim
def move_fs_to_cpu():
if device != "cpu":
mem = torch.cuda.memory_allocated() / 1e6
modelFS.to("cpu")
while torch.cuda.memory_allocated() / 1e6 >= mem:
time.sleep(1)
def gc():
if device == 'cpu':
return
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
# internal
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
return sd
# utils
class UserInitiatedStop(Exception):
pass
def load_img(img_str, w0, h0):
image = base64_str_to_img(img_str).convert("RGB")
w, h = image.size
print(f"loaded input image of size ({w}, {h}) from base64")
if h0 is not None and w0 is not None:
h, w = h0, w0
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
image = image.resize((w, h), resample=Image.Resampling.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.*image - 1.
2022-09-15 14:24:03 +02:00
def load_mask(mask_str, h0, w0, newH, newW, invert=False):
image = base64_str_to_img(mask_str).convert("RGB")
w, h = image.size
print(f"loaded input mask of size ({w}, {h})")
if invert:
print("inverted")
image = ImageOps.invert(image)
# where_0, where_1 = np.where(image == 0), np.where(image == 255)
# image[where_0], image[where_1] = 255, 0
if h0 is not None and w0 is not None:
h, w = h0, w0
w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64
print(f"New mask size ({w}, {h})")
image = image.resize((newW, newH), resample=Image.Resampling.LANCZOS)
image = np.array(image)
image = image.astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
# https://stackoverflow.com/a/61114178
def img_to_base64_str(img, output_format="PNG"):
buffered = BytesIO()
img.save(buffered, format=output_format)
buffered.seek(0)
img_byte = buffered.getvalue()
img_str = "data:image/png;base64," + base64.b64encode(img_byte).decode()
return img_str
def base64_str_to_img(img_str):
img_str = img_str[len("data:image/png;base64,"):]
data = base64.b64decode(img_str)
buffered = BytesIO(data)
img = Image.open(buffered)
return img