easydiffusion/ui/media/js/dnd.js

324 lines
10 KiB
JavaScript
Raw Normal View History

"use strict" // Opt in to a restricted variant of JavaScript
const TASK_MAPPING = {
prompt: { name: 'Prompt',
setUI: (prompt) => {
promptField.value = prompt
},
readUI: () => promptField.value,
parse: (val) => val
},
negative_prompt: { name: 'Negative Prompt',
setUI: (negative_prompt) => {
negativePromptField.value = negative_prompt
},
readUI: () => negativePromptField.value,
parse: (val) => val
},
width: { name: 'Width',
setUI: (width) => {
const oldVal = widthField.value
widthField.value = width
if (!widthField.value) {
widthField.value = oldVal
}
},
readUI: () => parseInt(widthField.value),
parse: (val) => parseInt(val)
},
height: { name: 'Height',
setUI: (height) => {
const oldVal = heightField.value
heightField.value = height
if (!heightField.value) {
heightField.value = oldVal
}
},
readUI: () => parseInt(heightField.value),
parse: (val) => parseInt(val)
},
seed: { name: 'Seed',
setUI: (seed) => {
if (!seed) {
randomSeedField.checked = true
return
}
randomSeedField.checked = false
seedField.value = seed
},
readUI: () => (randomSeedField.checked ? Math.floor(Math.random() * 10000000) : parseInt(seedField.value)),
parse: (val) => parseInt(val)
},
num_inference_steps: { name: 'Steps',
setUI: (num_inference_steps) => {
numInferenceStepsField.value = num_inference_steps
},
readUI: () => parseInt(numInferenceStepsField.value),
parse: (val) => parseInt(val)
},
guidance_scale: { name: 'Guidance Scale',
setUI: (guidance_scale) => {
guidanceScaleField.value = guidance_scale
},
readUI: () => parseFloat(guidanceScaleField.value),
parse: (val) => parseFloat(val)
},
prompt_strength: { name: 'Prompt Strength',
setUI: (prompt_strength) => {
promptStrengthField.value = prompt_strength
},
readUI: () => parseFloat(promptStrengthField.value),
parse: (val) => parseFloat(val)
},
init_image: { name: 'Initial Image',
setUI: (init_image) => {
initImagePreview.src = init_image
},
readUI: () => initImagePreview.src,
parse: (val) => val
},
mask: { name: 'Mask',
setUI: (mask) => {
inpaintingEditor.setImg(mask)
maskSetting.checked = Boolean(mask)
},
readUI: () => (maskSetting.checked ? inpaintingEditor.getImg() : undefined),
parse: (val) => val
},
use_face_correction: { name: 'Use Face Correction',
setUI: (use_face_correction) => {
useFaceCorrectionField.checked = Boolean(use_face_correction)
},
readUI: () => useFaceCorrectionField.checked,
parse: (val) => val
},
use_upscale: { name: 'Use Upscaling',
setUI: (use_upscale) => {
useUpscalingField.checked = Boolean(use_upscale)
upscaleModelField.value = use_upscale
},
readUI: () => (useUpscalingField.checked ? upscaleModelField.value : undefined),
parse: (val) => val
},
sampler: { name: 'Sampler',
setUI: (sampler) => {
samplerField.value = sampler
},
readUI: () => samplerField.value,
parse: (val) => val
},
use_stable_diffusion_model: { name: 'Stable Diffusion model',
setUI: (use_stable_diffusion_model) => {
const oldVal = stableDiffusionModelField.value
stableDiffusionModelField.value = use_stable_diffusion_model
if (!stableDiffusionModelField.value) {
stableDiffusionModelField.value = oldVal
}
},
readUI: () => stableDiffusionModelField.value,
parse: (val) => val
},
numOutputsParallel: { name: 'Parallel Images',
setUI: (numOutputsParallel) => {
numOutputsParallelField.value = numOutputsParallel
},
readUI: () => parseInt(numOutputsParallelField.value),
parse: (val) => val
},
use_cpu: { name: 'Use CPU',
setUI: (use_cpu) => {
useCPUField.checked = use_cpu
},
readUI: () => useCPUField.checked,
parse: (val) => val
},
turbo: { name: 'Turbo',
setUI: (turbo) => {
turboField.checked = turbo
},
readUI: () => turboField.checked,
parse: (val) => Boolean(val)
},
use_full_precision: { name: 'Use Full Precision',
setUI: (use_full_precision) => {
useFullPrecisionField.checked = use_full_precision
},
readUI: () => useFullPrecisionField.checked,
parse: (val) => Boolean(val)
},
stream_image_progress: { name: 'Stream Image Progress',
setUI: (stream_image_progress) => {
streamImageProgressField.checked = (parseInt(numOutputsTotalField.value) > 50 ? false : stream_image_progress)
},
readUI: () => streamImageProgressField.checked,
parse: (val) => Boolean(val)
},
show_only_filtered_image: { name: 'Show only the corrected/upscaled image',
setUI: (show_only_filtered_image) => {
showOnlyFilteredImageField.checked = show_only_filtered_image
},
readUI: () => showOnlyFilteredImageField.checked,
parse: (val) => Boolean(val)
},
output_format: { name: 'Output Format',
setUI: (output_format) => {
outputFormatField.value = output_format
},
readUI: () => outputFormatField.value,
parse: (val) => val
},
save_to_disk_path: { name: 'Save to disk path',
setUI: (save_to_disk_path) => {
saveToDiskField.checked = Boolean(save_to_disk_path)
diskPathField.value = save_to_disk_path
},
readUI: () => diskPathField.value,
parse: (val) => val
}
}
function restoreTaskToUI(task) {
if ('numOutputsTotal' in task) {
numOutputsTotalField.value = task.numOutputsTotal
}
if ('seed' in task) {
randomSeedField.checked = false
seedField.value = task.seed
}
if (!('reqBody' in task)) {
return
}
for (const key in TASK_MAPPING) {
if (key in task.reqBody) {
TASK_MAPPING[key].setUI(task.reqBody[key])
}
}
}
const TASK_TEXT_MAPPING = {
width: 'Width',
height: 'Height',
seed: 'Seed',
num_inference_steps: 'Steps',
guidance_scale: 'Guidance Scale',
prompt_strength: 'Prompt Strength',
use_face_correction: 'Use Face Correction',
use_upscale: 'Use Upscaling',
sampler: 'Sampler',
negative_prompt: 'Negative Prompt',
use_stable_diffusion_model: 'Stable Diffusion model'
}
const afterPromptRe = /^\s*Width\s*:\s*\d+\s*(?:\r\n|\r|\n)+\s*Height\s*:\s*\d+\s*(\r\n|\r|\n)+Seed\s*:\s*\d+\s*$/igm
const lineEndRe = /(?:\r\n|\r|\n)+/igm
function parseTaskFromText(str) {
const taskReqBody = {}
// Prompt
afterPromptRe.lastIndex = 0
const match = afterPromptRe.exec(str);
if (match) {
let prompt = str.slice(0, match.index)
str = str.slice(prompt.length)
taskReqBody.prompt = prompt.trim()
console.log('Prompt:', taskReqBody.prompt)
}
for (const key in TASK_TEXT_MAPPING) {
const name = TASK_TEXT_MAPPING[key];
let val = undefined
if (str.startsWith(name + ':')) {
// Backend format, faster
lineEndRe.lastIndex = 0
const endMatch = lineEndRe.exec(str)
if (endMatch) {
val = str.slice(name.length + 1, endMatch.index)
str = str.slice(endMatch.index + endMatch[0].length)
} else {
val = str.slice(name.length + 1)
str = ""
}
} else {
// User formatted, use regex to get all cases, but slower.
const reName = new RegExp(`${name}\\s*:\\s*(.*)(?:\\r\\n|\\r|\\n)*`, 'igm')
const match = reName.exec(str);
if (match) {
str = str.slice(0, match.index) + str.slice(match.index + match[0].length)
val = match[1]
}
}
if (val) {
taskReqBody[key] = TASK_MAPPING[key].parse(val.trim())
console.log(TASK_MAPPING[key].name + ':', taskReqBody[key])
if (!str) {
break;
}
}
}
if (Object.keys(taskReqBody).length <= 0) {
return undefined
}
const task = { reqBody: taskReqBody }
if ('seed' in taskReqBody) {
task.seed = taskReqBody.seed
}
return task
}
async function readFile(file, i) {
const fileContent = (await file.text()).trim()
// JSON File.
if (fileContent.startsWith('{') && fileContent.endsWith('}')) {
try {
const task = JSON.parse(fileContent)
restoreTaskToUI(task)
} catch (e) {
console.warn(`file[${i}]:${file.name} - File couldn't be parsed.`, e)
}
return
}
// Normal txt file.
const task = parseTaskFromText(fileContent)
if (task) {
restoreTaskToUI(task)
} else {
console.warn(`file[${i}]:${file.name} - File couldn't be parsed.`)
}
}
function dropHandler(ev) {
console.log('Content dropped...')
// Prevent default behavior (Prevent file/content from being opened)
ev.preventDefault()
if (ev?.dataTransfer?.items) { // Use DataTransferItemList interface
Array.from(ev.dataTransfer.items).forEach(function(item, i) {
if (item.kind === 'file') {
const file = item.getAsFile()
readFile(file, i)
}
})
} else if (ev?.dataTransfer?.files) { // Use DataTransfer interface
Array.from(ev.dataTransfer.files).forEach(readFile)
}
}
function dragOverHandler(ev) {
console.log('Content in drop zone')
// Prevent default behavior (Prevent file/content from being opened)
ev.preventDefault()
ev.dataTransfer.dropEffect = "copy"
let img = new Image()
img.src = location.host + '/media/images/favicon-32x32.png'
ev.dataTransfer.setDragImage(img, 16, 16)
}
document.addEventListener("drop", dropHandler)
document.addEventListener("dragover", dragOverHandler)