easydiffusion/ui/sd_internal/hypernetwork.py

198 lines
8.0 KiB
Python
Raw Normal View History

# this is basically a cut down version of https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/c9a2cfdf2a53d37c2de1908423e4f548088667ef/modules/hypernetworks/hypernetwork.py, mostly for feature parity
# I, c0bra5, don't really understand how deep learning works. I just know how to port stuff.
import inspect
import torch
import optimizedSD.splitAttention
from . import runtime
from einops import rearrange
optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}
loaded_hypernetwork = None
class HypernetworkModule(torch.nn.Module):
multiplier = 0.5
activation_dict = {
"linear": torch.nn.Identity,
"relu": torch.nn.ReLU,
"leakyrelu": torch.nn.LeakyReLU,
"elu": torch.nn.ELU,
"swish": torch.nn.Hardswish,
"tanh": torch.nn.Tanh,
"sigmoid": torch.nn.Sigmoid,
}
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
add_layer_norm=False, use_dropout=False, activate_output=False, last_layer_dropout=False):
super().__init__()
assert layer_structure is not None, "layer_structure must not be None"
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
linears = []
for i in range(len(layer_structure) - 1):
# Add a fully-connected layer
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
# Add an activation func except last layer
if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
pass
elif activation_func in self.activation_dict:
linears.append(self.activation_dict[activation_func]())
else:
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
# Add layer normalization
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
# Add dropout except last layer
if use_dropout and (i < len(layer_structure) - 3 or last_layer_dropout and i < len(layer_structure) - 2):
linears.append(torch.nn.Dropout(p=0.3))
self.linear = torch.nn.Sequential(*linears)
self.fix_old_state_dict(state_dict)
self.load_state_dict(state_dict)
self.to(runtime.thread_data.device)
def fix_old_state_dict(self, state_dict):
changes = {
'linear1.bias': 'linear.0.bias',
'linear1.weight': 'linear.0.weight',
'linear2.bias': 'linear.1.bias',
'linear2.weight': 'linear.1.weight',
}
for fr, to in changes.items():
x = state_dict.get(fr, None)
if x is None:
continue
del state_dict[fr]
state_dict[to] = x
def forward(self, x: torch.Tensor):
return x + self.linear(x) * runtime.thread_data.hypernetwork_strength
def apply_hypernetwork(hypernetwork, context, layer=None):
hypernetwork_layers = hypernetwork.get(context.shape[2], None)
if hypernetwork_layers is None:
return context, context
if layer is not None:
layer.hyper_k = hypernetwork_layers[0]
layer.hyper_v = hypernetwork_layers[1]
context_k = hypernetwork_layers[0](context)
context_v = hypernetwork_layers[1](context)
return context_k, context_v
def get_kv(context, hypernetwork):
if hypernetwork is None:
return context, context
else:
return apply_hypernetwork(runtime.thread_data.hypernetwork, context)
# This might need updating as the optimisedSD code changes
# I think yall have a system for this (patch files in sd_internal) but idk how it works and no amount of searching gave me any clue
# just in case for attribution https://github.com/easydiffusion/diffusion-kit/blob/e8ea0cadd543056059cd951e76d4744de76327d2/optimizedSD/splitAttention.py#L171
def new_cross_attention_forward(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
# default context
context = context if context is not None else x() if inspect.isfunction(x) else x
# hypernetwork!
context_k, context_v = get_kv(context, runtime.thread_data.hypernetwork)
k = self.to_k(context_k)
v = self.to_v(context_v)
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
limit = k.shape[0]
att_step = self.att_step
q_chunks = list(torch.tensor_split(q, limit//att_step, dim=0))
k_chunks = list(torch.tensor_split(k, limit//att_step, dim=0))
v_chunks = list(torch.tensor_split(v, limit//att_step, dim=0))
q_chunks.reverse()
k_chunks.reverse()
v_chunks.reverse()
sim = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
del k, q, v
for i in range (0, limit, att_step):
q_buffer = q_chunks.pop()
k_buffer = k_chunks.pop()
v_buffer = v_chunks.pop()
sim_buffer = torch.einsum('b i d, b j d -> b i j', q_buffer, k_buffer) * self.scale
del k_buffer, q_buffer
# attention, what we cannot get enough of, by chunks
sim_buffer = sim_buffer.softmax(dim=-1)
sim_buffer = torch.einsum('b i j, b j d -> b i d', sim_buffer, v_buffer)
del v_buffer
sim[i:i+att_step,:,:] = sim_buffer
del sim_buffer
sim = rearrange(sim, '(b h) n d -> b n (h d)', h=h)
return self.to_out(sim)
def load_hypernetwork(path: str):
state_dict = torch.load(path, map_location='cpu')
layer_structure = state_dict.get('layer_structure', [1, 2, 1])
activation_func = state_dict.get('activation_func', None)
weight_init = state_dict.get('weight_initialization', 'Normal')
add_layer_norm = state_dict.get('is_layer_norm', False)
use_dropout = state_dict.get('use_dropout', False)
activate_output = state_dict.get('activate_output', True)
last_layer_dropout = state_dict.get('last_layer_dropout', False)
# this is a bit verbose so leaving it commented out for the poor soul who ever has to debug this
# print(f"layer_structure: {layer_structure}")
# print(f"activation_func: {activation_func}")
# print(f"weight_init: {weight_init}")
# print(f"add_layer_norm: {add_layer_norm}")
# print(f"use_dropout: {use_dropout}")
# print(f"activate_output: {activate_output}")
# print(f"last_layer_dropout: {last_layer_dropout}")
layers = {}
for size, sd in state_dict.items():
if type(size) == int:
layers[size] = (
HypernetworkModule(size, sd[0], layer_structure, activation_func, weight_init, add_layer_norm,
use_dropout, activate_output, last_layer_dropout=last_layer_dropout),
HypernetworkModule(size, sd[1], layer_structure, activation_func, weight_init, add_layer_norm,
use_dropout, activate_output, last_layer_dropout=last_layer_dropout),
)
print(f"hypernetwork loaded")
return layers
# overriding of original function
old_cross_attention_forward = optimizedSD.splitAttention.CrossAttention.forward
# hijacks the cross attention forward function to add hyper network support
def hijack_cross_attention():
print("hypernetwork functionality added to cross attention")
optimizedSD.splitAttention.CrossAttention.forward = new_cross_attention_forward
# there was a cop on board
def unhijack_cross_attention_forward():
print("hypernetwork functionality removed from cross attention")
optimizedSD.splitAttention.CrossAttention.forward = old_cross_attention_forward
hijack_cross_attention()