mirror of
https://github.com/easydiffusion/easydiffusion.git
synced 2025-04-04 05:51:17 +02:00
Use full precision automatically for NVIDIA 1650 and 1660
This commit is contained in:
parent
f44c1d4536
commit
1d4e06b884
@ -269,7 +269,7 @@
|
|||||||
<div id="server-status-color"> </div>
|
<div id="server-status-color"> </div>
|
||||||
<span id="server-status-msg">Stable Diffusion is starting..</span>
|
<span id="server-status-msg">Stable Diffusion is starting..</span>
|
||||||
</div>
|
</div>
|
||||||
<h1>Stable Diffusion UI <small>v2.07 (beta)</small></h1>
|
<h1>Stable Diffusion UI <small>v2.08 (beta)</small></h1>
|
||||||
</div>
|
</div>
|
||||||
<div id="editor-inputs">
|
<div id="editor-inputs">
|
||||||
<div id="editor-inputs-prompt" class="row">
|
<div id="editor-inputs-prompt" class="row">
|
||||||
@ -347,7 +347,7 @@
|
|||||||
<li><input id="sound_toggle" name="sound_toggle" type="checkbox" checked> <label for="sound_toggle">Play sound on task completion</label></li>
|
<li><input id="sound_toggle" name="sound_toggle" type="checkbox" checked> <label for="sound_toggle">Play sound on task completion</label></li>
|
||||||
<li><input id="turbo" name="turbo" type="checkbox" checked> <label for="turbo">Turbo mode (generates images faster, but uses an additional 1 GB of GPU memory)</label></li>
|
<li><input id="turbo" name="turbo" type="checkbox" checked> <label for="turbo">Turbo mode (generates images faster, but uses an additional 1 GB of GPU memory)</label></li>
|
||||||
<li><input id="use_cpu" name="use_cpu" type="checkbox"> <label for="use_cpu">Use CPU instead of GPU (warning: this will be *very* slow)</label></li>
|
<li><input id="use_cpu" name="use_cpu" type="checkbox"> <label for="use_cpu">Use CPU instead of GPU (warning: this will be *very* slow)</label></li>
|
||||||
<li><input id="use_full_precision" name="use_full_precision" type="checkbox"> <label for="use_full_precision">Use full precision (for GPU-only. warning: this will consume more VRAM. Use this for NVIDIA 1650 and 1660)</label></li>
|
<li><input id="use_full_precision" name="use_full_precision" type="checkbox"> <label for="use_full_precision">Use full precision (for GPU-only. warning: this will consume more VRAM)</label></li>
|
||||||
<!-- <li><input id="allow_nsfw" name="allow_nsfw" type="checkbox"> <label for="allow_nsfw">Allow NSFW Content (You confirm you are above 18 years of age)</label></li> -->
|
<!-- <li><input id="allow_nsfw" name="allow_nsfw" type="checkbox"> <label for="allow_nsfw">Allow NSFW Content (You confirm you are above 18 years of age)</label></li> -->
|
||||||
</ul>
|
</ul>
|
||||||
</div>
|
</div>
|
||||||
|
@ -43,13 +43,22 @@ precision = 'autocast'
|
|||||||
sampler_plms = None
|
sampler_plms = None
|
||||||
sampler_ddim = None
|
sampler_ddim = None
|
||||||
|
|
||||||
|
force_full_precision = False
|
||||||
|
try:
|
||||||
|
gpu_name = torch.cuda.get_device_name(torch.cuda.current_device())
|
||||||
|
force_full_precision = ('nvidia' in gpu_name.lower()) and (' 1660' in gpu_name or ' 1650' in gpu_name) # otherwise these NVIDIA cards create green images
|
||||||
|
if force_full_precision:
|
||||||
|
print('forcing full precision on NVIDIA 16xx cards, to avoid green images')
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
# api
|
# api
|
||||||
def load_model(ckpt_to_use, device_to_use='cuda', turbo=False, unet_bs_to_use=1, precision_to_use='autocast', half_model_fs=False):
|
def load_model(ckpt_to_use, device_to_use='cuda', turbo=False, unet_bs_to_use=1, precision_to_use='autocast', half_model_fs=False):
|
||||||
global ckpt, model, modelCS, modelFS, model_is_half, device, unet_bs, precision, model_fs_is_half
|
global ckpt, model, modelCS, modelFS, model_is_half, device, unet_bs, precision, model_fs_is_half
|
||||||
|
|
||||||
ckpt = ckpt_to_use
|
ckpt = ckpt_to_use
|
||||||
device = device_to_use
|
device = device_to_use
|
||||||
precision = precision_to_use
|
precision = precision_to_use if not force_full_precision else 'full'
|
||||||
unet_bs = unet_bs_to_use
|
unet_bs = unet_bs_to_use
|
||||||
|
|
||||||
sd = load_model_from_config(f"{ckpt}")
|
sd = load_model_from_config(f"{ckpt}")
|
||||||
@ -119,9 +128,9 @@ def mk_img(req: Request):
|
|||||||
device = 'cuda'
|
device = 'cuda'
|
||||||
|
|
||||||
if (precision == 'autocast' and (req.use_full_precision or not model_is_half)) or \
|
if (precision == 'autocast' and (req.use_full_precision or not model_is_half)) or \
|
||||||
(precision == 'full' and not req.use_full_precision) or \
|
(precision == 'full' and not req.use_full_precision and not force_full_precision) or \
|
||||||
(req.init_image is None and model_fs_is_half) or \
|
(req.init_image is None and model_fs_is_half) or \
|
||||||
(req.init_image is not None and not model_fs_is_half):
|
(req.init_image is not None and not model_fs_is_half and not force_full_precision):
|
||||||
|
|
||||||
print('reloading model for cuda')
|
print('reloading model for cuda')
|
||||||
load_model(ckpt, device, model.turbo, unet_bs, ('full' if req.use_full_precision else 'autocast'), half_model_fs=(req.init_image is not None and not req.use_full_precision))
|
load_model(ckpt, device, model.turbo, unet_bs, ('full' if req.use_full_precision else 'autocast'), half_model_fs=(req.init_image is not None and not req.use_full_precision))
|
||||||
@ -147,6 +156,8 @@ def mk_img(req: Request):
|
|||||||
|
|
||||||
print(req.to_string(), '\n device', device)
|
print(req.to_string(), '\n device', device)
|
||||||
|
|
||||||
|
print('\n\n Using precision:', precision)
|
||||||
|
|
||||||
seed_everything(opt_seed)
|
seed_everything(opt_seed)
|
||||||
|
|
||||||
batch_size = opt_n_samples
|
batch_size = opt_n_samples
|
||||||
|
Loading…
Reference in New Issue
Block a user