mirror of
https://github.com/easydiffusion/easydiffusion.git
synced 2024-11-28 19:23:14 +01:00
Working txt2img
This commit is contained in:
parent
02dd3e457d
commit
642c114501
@ -46,7 +46,7 @@ if NOT DEFINED test_sd2 set test_sd2=N
|
||||
@call git apply --whitespace=warn ..\ui\sd_internal\ddim_callback.patch
|
||||
)
|
||||
if "%test_sd2%" == "Y" (
|
||||
@call git -c advice.detachedHead=false checkout 5a14697a8f4a43a56b575a0b1d02a48b37fb9b94
|
||||
@call git -c advice.detachedHead=false checkout 992f111312afa9ec1a01beaa9733cb9728f5acd3
|
||||
|
||||
@call git apply --whitespace=warn ..\ui\sd_internal\ddim_callback_sd2.patch
|
||||
)
|
||||
|
@ -40,7 +40,7 @@ if [ -e "scripts/install_status.txt" ] && [ `grep -c sd_git_cloned scripts/insta
|
||||
|
||||
git apply --whitespace=warn ../ui/sd_internal/ddim_callback.patch || fail "ddim patch failed"
|
||||
elif [ "$test_sd2" == "Y" ]; then
|
||||
git -c advice.detachedHead=false checkout 5a14697a8f4a43a56b575a0b1d02a48b37fb9b94
|
||||
git -c advice.detachedHead=false checkout 992f111312afa9ec1a01beaa9733cb9728f5acd3
|
||||
|
||||
git apply --whitespace=warn ../ui/sd_internal/ddim_callback_sd2.patch || fail "sd2 ddim patch failed"
|
||||
fi
|
||||
|
@ -1,20 +1,84 @@
|
||||
diff --git a/optimizedSD/ddpm.py b/optimizedSD/ddpm.py
|
||||
index 1bbdd02..cd00cc3 100644
|
||||
--- a/optimizedSD/ddpm.py
|
||||
+++ b/optimizedSD/ddpm.py
|
||||
@@ -348,6 +348,7 @@ class DDPM(pl.LightningModule):
|
||||
def sample(self, batch_size=16, return_intermediates=False):
|
||||
image_size = self.image_size
|
||||
channels = self.channels
|
||||
+ print('sampler 2')
|
||||
return self.p_sample_loop((batch_size, channels, image_size, image_size),
|
||||
return_intermediates=return_intermediates)
|
||||
diff --git a/ldm/models/diffusion/ddim.py b/ldm/models/diffusion/ddim.py
|
||||
index 27ead0e..6215939 100644
|
||||
--- a/ldm/models/diffusion/ddim.py
|
||||
+++ b/ldm/models/diffusion/ddim.py
|
||||
@@ -100,7 +100,7 @@ class DDIMSampler(object):
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
||||
|
||||
@@ -1090,6 +1091,7 @@ class LatentDiffusion(DDPM):
|
||||
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
||||
verbose=True, timesteps=None, quantize_denoised=False,
|
||||
mask=None, x0=None, shape=None, **kwargs):
|
||||
+ print('sampler 1')
|
||||
if shape is None:
|
||||
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
||||
if cond is not None:
|
||||
- samples, intermediates = self.ddim_sampling(conditioning, size,
|
||||
+ samples = self.ddim_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
@@ -117,7 +117,8 @@ class DDIMSampler(object):
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
ucg_schedule=ucg_schedule
|
||||
)
|
||||
- return samples, intermediates
|
||||
+ # return samples, intermediates
|
||||
+ yield from samples
|
||||
|
||||
@torch.no_grad()
|
||||
def ddim_sampling(self, cond, shape,
|
||||
@@ -168,14 +169,15 @@ class DDIMSampler(object):
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold)
|
||||
img, pred_x0 = outs
|
||||
- if callback: callback(i)
|
||||
- if img_callback: img_callback(pred_x0, i)
|
||||
+ if callback: yield from callback(i)
|
||||
+ if img_callback: yield from img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
intermediates['pred_x0'].append(pred_x0)
|
||||
|
||||
- return img, intermediates
|
||||
+ # return img, intermediates
|
||||
+ yield from img_callback(pred_x0, len(iterator)-1)
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
diff --git a/ldm/models/diffusion/plms.py b/ldm/models/diffusion/plms.py
|
||||
index 7002a36..0951f39 100644
|
||||
--- a/ldm/models/diffusion/plms.py
|
||||
+++ b/ldm/models/diffusion/plms.py
|
||||
@@ -96,7 +96,7 @@ class PLMSSampler(object):
|
||||
size = (batch_size, C, H, W)
|
||||
print(f'Data shape for PLMS sampling is {size}')
|
||||
|
||||
- samples, intermediates = self.plms_sampling(conditioning, size,
|
||||
+ samples = self.plms_sampling(conditioning, size,
|
||||
callback=callback,
|
||||
img_callback=img_callback,
|
||||
quantize_denoised=quantize_x0,
|
||||
@@ -112,7 +112,8 @@ class PLMSSampler(object):
|
||||
unconditional_conditioning=unconditional_conditioning,
|
||||
dynamic_threshold=dynamic_threshold,
|
||||
)
|
||||
- return samples, intermediates
|
||||
+ #return samples, intermediates
|
||||
+ yield from samples
|
||||
|
||||
@torch.no_grad()
|
||||
def plms_sampling(self, cond, shape,
|
||||
@@ -165,14 +166,15 @@ class PLMSSampler(object):
|
||||
old_eps.append(e_t)
|
||||
if len(old_eps) >= 4:
|
||||
old_eps.pop(0)
|
||||
- if callback: callback(i)
|
||||
- if img_callback: img_callback(pred_x0, i)
|
||||
+ if callback: yield from callback(i)
|
||||
+ if img_callback: yield from img_callback(pred_x0, i)
|
||||
|
||||
if index % log_every_t == 0 or index == total_steps - 1:
|
||||
intermediates['x_inter'].append(img)
|
||||
intermediates['pred_x0'].append(pred_x0)
|
||||
|
||||
- return img, intermediates
|
||||
+ # return img, intermediates
|
||||
+ yield from img_callback(pred_x0, len(iterator)-1)
|
||||
|
||||
@torch.no_grad()
|
||||
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||
|
@ -749,20 +749,57 @@ def _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, start_code,
|
||||
if sampler_name == 'ddim':
|
||||
thread_data.model.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False)
|
||||
|
||||
samples_ddim = thread_data.model.sample(
|
||||
S=opt_ddim_steps,
|
||||
conditioning=c,
|
||||
seed=opt_seed,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=opt_scale,
|
||||
unconditional_conditioning=uc,
|
||||
eta=opt_ddim_eta,
|
||||
x_T=start_code,
|
||||
img_callback=img_callback,
|
||||
mask=mask,
|
||||
sampler = sampler_name,
|
||||
)
|
||||
# samples, _ = sampler.sample(S=opt.steps,
|
||||
# conditioning=c,
|
||||
# batch_size=opt.n_samples,
|
||||
# shape=shape,
|
||||
# verbose=False,
|
||||
# unconditional_guidance_scale=opt.scale,
|
||||
# unconditional_conditioning=uc,
|
||||
# eta=opt.ddim_eta,
|
||||
# x_T=start_code)
|
||||
|
||||
if thread_data.test_sd2:
|
||||
from ldm.models.diffusion.ddim import DDIMSampler
|
||||
from ldm.models.diffusion.plms import PLMSSampler
|
||||
|
||||
shape = [opt_C, opt_H // opt_f, opt_W // opt_f]
|
||||
|
||||
if sampler_name == 'plms':
|
||||
sampler = PLMSSampler(thread_data.model)
|
||||
elif sampler_name == 'ddim':
|
||||
sampler = DDIMSampler(thread_data.model)
|
||||
|
||||
samples_ddim = sampler.sample(
|
||||
S=opt_ddim_steps,
|
||||
conditioning=c,
|
||||
batch_size=opt_n_samples,
|
||||
seed=opt_seed,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=opt_scale,
|
||||
unconditional_conditioning=uc,
|
||||
eta=opt_ddim_eta,
|
||||
x_T=start_code,
|
||||
img_callback=img_callback,
|
||||
mask=mask,
|
||||
sampler = sampler_name,
|
||||
)
|
||||
else:
|
||||
samples_ddim = thread_data.model.sample(
|
||||
S=opt_ddim_steps,
|
||||
conditioning=c,
|
||||
seed=opt_seed,
|
||||
shape=shape,
|
||||
verbose=False,
|
||||
unconditional_guidance_scale=opt_scale,
|
||||
unconditional_conditioning=uc,
|
||||
eta=opt_ddim_eta,
|
||||
x_T=start_code,
|
||||
img_callback=img_callback,
|
||||
mask=mask,
|
||||
sampler = sampler_name,
|
||||
)
|
||||
yield from samples_ddim
|
||||
|
||||
def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask):
|
||||
|
Loading…
Reference in New Issue
Block a user