mirror of
https://github.com/easydiffusion/easydiffusion.git
synced 2024-11-22 00:03:20 +01:00
First working version of dynamic backends, with Forge and ed_diffusers (v3) and ed_classic (v2). Does not auto-install Forge yet
This commit is contained in:
parent
2eb0c9106a
commit
9a12a8618c
@ -11,7 +11,7 @@ from ruamel.yaml import YAML
|
||||
import urllib
|
||||
import warnings
|
||||
|
||||
from easydiffusion import task_manager
|
||||
from easydiffusion import task_manager, backend_manager
|
||||
from easydiffusion.utils import log
|
||||
from rich.logging import RichHandler
|
||||
from rich.console import Console
|
||||
@ -60,7 +60,7 @@ APP_CONFIG_DEFAULTS = {
|
||||
"ui": {
|
||||
"open_browser_on_start": True,
|
||||
},
|
||||
"use_v3_engine": True,
|
||||
"backend": "ed_diffusers",
|
||||
}
|
||||
|
||||
IMAGE_EXTENSIONS = [
|
||||
@ -108,6 +108,8 @@ def init():
|
||||
if config_models_dir is not None and config_models_dir != "":
|
||||
MODELS_DIR = config_models_dir
|
||||
|
||||
backend_manager.start_backend()
|
||||
|
||||
|
||||
def init_render_threads():
|
||||
load_server_plugins()
|
||||
@ -124,9 +126,9 @@ def getConfig(default_val=APP_CONFIG_DEFAULTS):
|
||||
shutil.move(config_legacy_yaml, config_yaml_path)
|
||||
|
||||
def set_config_on_startup(config: dict):
|
||||
if getConfig.__use_v3_engine_on_startup is None:
|
||||
getConfig.__use_v3_engine_on_startup = config.get("use_v3_engine", True)
|
||||
config["config_on_startup"] = {"use_v3_engine": getConfig.__use_v3_engine_on_startup}
|
||||
if getConfig.__use_backend_on_startup is None:
|
||||
getConfig.__use_backend_on_startup = config.get("backend", "ed_diffusers")
|
||||
config["config_on_startup"] = {"backend": getConfig.__use_backend_on_startup}
|
||||
|
||||
if os.path.isfile(config_yaml_path):
|
||||
try:
|
||||
@ -144,6 +146,15 @@ def getConfig(default_val=APP_CONFIG_DEFAULTS):
|
||||
else:
|
||||
config["net"]["listen_to_network"] = True
|
||||
|
||||
if "backend" not in config:
|
||||
if "use_v3_engine" in config:
|
||||
config["backend"] = "ed_diffusers" if config["use_v3_engine"] else "ed_classic"
|
||||
else:
|
||||
config["backend"] = "ed_diffusers"
|
||||
# this default will need to be smarter when WebUI becomes the main backend, but needs to maintain backwards
|
||||
# compatibility with existing ED 3.0 installations that haven't opted into the WebUI backend, and haven't
|
||||
# set a "use_v3_engine" flag in their config
|
||||
|
||||
set_config_on_startup(config)
|
||||
|
||||
return config
|
||||
@ -174,7 +185,7 @@ def getConfig(default_val=APP_CONFIG_DEFAULTS):
|
||||
return default_val
|
||||
|
||||
|
||||
getConfig.__use_v3_engine_on_startup = None
|
||||
getConfig.__use_backend_on_startup = None
|
||||
|
||||
|
||||
def setConfig(config):
|
||||
|
105
ui/easydiffusion/backend_manager.py
Normal file
105
ui/easydiffusion/backend_manager.py
Normal file
@ -0,0 +1,105 @@
|
||||
import os
|
||||
import ast
|
||||
import sys
|
||||
import importlib.util
|
||||
import traceback
|
||||
|
||||
from easydiffusion.utils import log
|
||||
|
||||
backend = None
|
||||
curr_backend_name = None
|
||||
|
||||
|
||||
def is_valid_backend(file_path):
|
||||
with open(file_path, "r", encoding="utf-8") as file:
|
||||
node = ast.parse(file.read())
|
||||
|
||||
# Check for presence of a dictionary named 'ed_info'
|
||||
for item in node.body:
|
||||
if isinstance(item, ast.Assign):
|
||||
for target in item.targets:
|
||||
if isinstance(target, ast.Name) and target.id == "ed_info":
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def find_valid_backends(root_dir) -> dict:
|
||||
backends_path = os.path.join(root_dir, "backends")
|
||||
valid_backends = {}
|
||||
|
||||
if not os.path.exists(backends_path):
|
||||
return valid_backends
|
||||
|
||||
for item in os.listdir(backends_path):
|
||||
item_path = os.path.join(backends_path, item)
|
||||
|
||||
if os.path.isdir(item_path):
|
||||
init_file = os.path.join(item_path, "__init__.py")
|
||||
if os.path.exists(init_file) and is_valid_backend(init_file):
|
||||
valid_backends[item] = item_path
|
||||
elif item.endswith(".py"):
|
||||
if is_valid_backend(item_path):
|
||||
backend_name = os.path.splitext(item)[0] # strip the .py extension
|
||||
valid_backends[backend_name] = item_path
|
||||
|
||||
return valid_backends
|
||||
|
||||
|
||||
def load_backend_module(backend_name, backend_dict):
|
||||
if backend_name not in backend_dict:
|
||||
raise ValueError(f"Backend '{backend_name}' not found.")
|
||||
|
||||
module_path = backend_dict[backend_name]
|
||||
|
||||
mod_dir = os.path.dirname(module_path)
|
||||
|
||||
sys.path.insert(0, mod_dir)
|
||||
|
||||
# If it's a package (directory), add its parent directory to sys.path
|
||||
if os.path.isdir(module_path):
|
||||
module_path = os.path.join(module_path, "__init__.py")
|
||||
|
||||
spec = importlib.util.spec_from_file_location(backend_name, module_path)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(module)
|
||||
|
||||
if mod_dir in sys.path:
|
||||
sys.path.remove(mod_dir)
|
||||
|
||||
log.info(f"Loaded backend: {module}")
|
||||
|
||||
return module
|
||||
|
||||
|
||||
def start_backend():
|
||||
global backend, curr_backend_name
|
||||
|
||||
from easydiffusion.app import getConfig, ROOT_DIR
|
||||
|
||||
curr_dir = os.path.dirname(__file__)
|
||||
|
||||
backends = find_valid_backends(curr_dir)
|
||||
plugin_backends = find_valid_backends(ROOT_DIR)
|
||||
backends.update(plugin_backends)
|
||||
|
||||
config = getConfig()
|
||||
backend_name = config["backend"]
|
||||
|
||||
if backend_name not in backends:
|
||||
raise RuntimeError(
|
||||
f"Couldn't find the backend configured in config.yaml: {backend_name}. Please check the name!"
|
||||
)
|
||||
|
||||
if backend is not None and backend_name != curr_backend_name:
|
||||
try:
|
||||
backend.stop_backend()
|
||||
except:
|
||||
log.exception(traceback.format_exc())
|
||||
|
||||
log.info(f"Loading backend: {backend_name}")
|
||||
backend = load_backend_module(backend_name, backends)
|
||||
|
||||
try:
|
||||
backend.start_backend()
|
||||
except:
|
||||
log.exception(traceback.format_exc())
|
27
ui/easydiffusion/backends/ed_classic.py
Normal file
27
ui/easydiffusion/backends/ed_classic.py
Normal file
@ -0,0 +1,27 @@
|
||||
from sdkit_common import (
|
||||
start_backend,
|
||||
stop_backend,
|
||||
install_backend,
|
||||
uninstall_backend,
|
||||
create_sdkit_context,
|
||||
ping,
|
||||
load_model,
|
||||
unload_model,
|
||||
set_options,
|
||||
generate_images,
|
||||
filter_images,
|
||||
get_url,
|
||||
stop_rendering,
|
||||
refresh_models,
|
||||
list_controlnet_filters,
|
||||
)
|
||||
|
||||
ed_info = {
|
||||
"name": "Classic backend for Easy Diffusion v2",
|
||||
"version": (1, 0, 0),
|
||||
"type": "backend",
|
||||
}
|
||||
|
||||
|
||||
def create_context():
|
||||
return create_sdkit_context(use_diffusers=False)
|
27
ui/easydiffusion/backends/ed_diffusers.py
Normal file
27
ui/easydiffusion/backends/ed_diffusers.py
Normal file
@ -0,0 +1,27 @@
|
||||
from sdkit_common import (
|
||||
start_backend,
|
||||
stop_backend,
|
||||
install_backend,
|
||||
uninstall_backend,
|
||||
create_sdkit_context,
|
||||
ping,
|
||||
load_model,
|
||||
unload_model,
|
||||
set_options,
|
||||
generate_images,
|
||||
filter_images,
|
||||
get_url,
|
||||
stop_rendering,
|
||||
refresh_models,
|
||||
list_controlnet_filters,
|
||||
)
|
||||
|
||||
ed_info = {
|
||||
"name": "Diffusers Backend for Easy Diffusion v3",
|
||||
"version": (1, 0, 0),
|
||||
"type": "backend",
|
||||
}
|
||||
|
||||
|
||||
def create_context():
|
||||
return create_sdkit_context(use_diffusers=True)
|
237
ui/easydiffusion/backends/sdkit_common.py
Normal file
237
ui/easydiffusion/backends/sdkit_common.py
Normal file
@ -0,0 +1,237 @@
|
||||
from sdkit import Context
|
||||
|
||||
from easydiffusion.types import UserInitiatedStop
|
||||
|
||||
from sdkit.utils import (
|
||||
diffusers_latent_samples_to_images,
|
||||
gc,
|
||||
img_to_base64_str,
|
||||
latent_samples_to_images,
|
||||
)
|
||||
|
||||
opts = {}
|
||||
|
||||
|
||||
def install_backend():
|
||||
pass
|
||||
|
||||
|
||||
def start_backend():
|
||||
print("Started sdkit backend")
|
||||
|
||||
|
||||
def stop_backend():
|
||||
pass
|
||||
|
||||
|
||||
def uninstall_backend():
|
||||
pass
|
||||
|
||||
|
||||
def create_sdkit_context(use_diffusers):
|
||||
c = Context()
|
||||
c.test_diffusers = use_diffusers
|
||||
return c
|
||||
|
||||
|
||||
def ping(timeout=1):
|
||||
return True
|
||||
|
||||
|
||||
def load_model(context, model_type, **kwargs):
|
||||
from sdkit.models import load_model
|
||||
|
||||
load_model(context, model_type, **kwargs)
|
||||
|
||||
|
||||
def unload_model(context, model_type, **kwargs):
|
||||
from sdkit.models import unload_model
|
||||
|
||||
unload_model(context, model_type, **kwargs)
|
||||
|
||||
|
||||
def set_options(context, **kwargs):
|
||||
if "vae_tiling" in kwargs and context.test_diffusers:
|
||||
pipe = context.models["stable-diffusion"]["default"]
|
||||
vae_tiling = kwargs["vae_tiling"]
|
||||
|
||||
if vae_tiling:
|
||||
if hasattr(pipe, "enable_vae_tiling"):
|
||||
pipe.enable_vae_tiling()
|
||||
else:
|
||||
if hasattr(pipe, "disable_vae_tiling"):
|
||||
pipe.disable_vae_tiling()
|
||||
|
||||
for key in (
|
||||
"output_format",
|
||||
"output_quality",
|
||||
"output_lossless",
|
||||
"stream_image_progress",
|
||||
"stream_image_progress_interval",
|
||||
):
|
||||
if key in kwargs:
|
||||
opts[key] = kwargs[key]
|
||||
|
||||
|
||||
def generate_images(
|
||||
context: Context,
|
||||
callback=None,
|
||||
controlnet_filter=None,
|
||||
output_type="pil",
|
||||
**req,
|
||||
):
|
||||
from sdkit.generate import generate_images
|
||||
|
||||
if req["init_image"] is not None and not context.test_diffusers:
|
||||
req["sampler_name"] = "ddim"
|
||||
|
||||
gc(context)
|
||||
|
||||
context.stop_processing = False
|
||||
|
||||
if req["control_image"] and controlnet_filter:
|
||||
controlnet_filter = convert_ED_controlnet_filter_name(controlnet_filter)
|
||||
req["control_image"] = filter_images(context, req["control_image"], controlnet_filter)[0]
|
||||
|
||||
callback = make_step_callback(context, callback)
|
||||
|
||||
try:
|
||||
images = generate_images(context, callback=callback, **req)
|
||||
except UserInitiatedStop:
|
||||
images = []
|
||||
if context.partial_x_samples is not None:
|
||||
if context.test_diffusers:
|
||||
images = diffusers_latent_samples_to_images(context, context.partial_x_samples)
|
||||
else:
|
||||
images = latent_samples_to_images(context, context.partial_x_samples)
|
||||
finally:
|
||||
if hasattr(context, "partial_x_samples") and context.partial_x_samples is not None:
|
||||
if not context.test_diffusers:
|
||||
del context.partial_x_samples
|
||||
context.partial_x_samples = None
|
||||
|
||||
gc(context)
|
||||
|
||||
if output_type == "base64":
|
||||
output_format = opts.get("output_format", "jpeg")
|
||||
output_quality = opts.get("output_quality", 75)
|
||||
output_lossless = opts.get("output_lossless", False)
|
||||
images = [img_to_base64_str(img, output_format, output_quality, output_lossless) for img in images]
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def filter_images(context: Context, images, filters, filter_params={}, input_type="pil"):
|
||||
gc(context)
|
||||
|
||||
if "nsfw_checker" in filters:
|
||||
filters.remove("nsfw_checker") # handled by ED directly
|
||||
|
||||
images = _filter_images(context, images, filters, filter_params)
|
||||
|
||||
if input_type == "base64":
|
||||
output_format = opts.get("output_format", "jpg")
|
||||
output_quality = opts.get("output_quality", 75)
|
||||
output_lossless = opts.get("output_lossless", False)
|
||||
images = [img_to_base64_str(img, output_format, output_quality, output_lossless) for img in images]
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def _filter_images(context, images, filters, filter_params={}):
|
||||
from sdkit.filter import apply_filters
|
||||
|
||||
filters = filters if isinstance(filters, list) else [filters]
|
||||
filters = convert_ED_controlnet_filter_name(filters)
|
||||
|
||||
for filter_name in filters:
|
||||
params = filter_params.get(filter_name, {})
|
||||
|
||||
previous_state = before_filter(context, filter_name, params)
|
||||
|
||||
try:
|
||||
images = apply_filters(context, filter_name, images, **params)
|
||||
finally:
|
||||
after_filter(context, filter_name, params, previous_state)
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def before_filter(context, filter_name, filter_params):
|
||||
if filter_name == "codeformer":
|
||||
from easydiffusion.model_manager import DEFAULT_MODELS, resolve_model_to_use
|
||||
|
||||
default_realesrgan = DEFAULT_MODELS["realesrgan"][0]["file_name"]
|
||||
prev_realesrgan_path = None
|
||||
|
||||
upscale_faces = filter_params.get("upscale_faces", False)
|
||||
if upscale_faces and default_realesrgan not in context.model_paths["realesrgan"]:
|
||||
prev_realesrgan_path = context.model_paths.get("realesrgan")
|
||||
context.model_paths["realesrgan"] = resolve_model_to_use(default_realesrgan, "realesrgan")
|
||||
load_model(context, "realesrgan")
|
||||
|
||||
return prev_realesrgan_path
|
||||
|
||||
|
||||
def after_filter(context, filter_name, filter_params, previous_state):
|
||||
if filter_name == "codeformer":
|
||||
prev_realesrgan_path = previous_state
|
||||
if prev_realesrgan_path:
|
||||
context.model_paths["realesrgan"] = prev_realesrgan_path
|
||||
load_model(context, "realesrgan")
|
||||
|
||||
|
||||
def get_url():
|
||||
pass
|
||||
|
||||
|
||||
def stop_rendering(context):
|
||||
context.stop_processing = True
|
||||
|
||||
|
||||
def refresh_models():
|
||||
pass
|
||||
|
||||
|
||||
def list_controlnet_filters():
|
||||
from sdkit.models.model_loader.controlnet_filters import filters as cn_filters
|
||||
|
||||
return cn_filters
|
||||
|
||||
|
||||
def make_step_callback(context, callback):
|
||||
def on_step(x_samples, i, *args):
|
||||
stream_image_progress = opts.get("stream_image_progress", False)
|
||||
stream_image_progress_interval = opts.get("stream_image_progress_interval", 3)
|
||||
|
||||
if context.test_diffusers:
|
||||
context.partial_x_samples = (x_samples, args[0])
|
||||
else:
|
||||
context.partial_x_samples = x_samples
|
||||
|
||||
if stream_image_progress and stream_image_progress_interval > 0 and i % stream_image_progress_interval == 0:
|
||||
if context.test_diffusers:
|
||||
images = diffusers_latent_samples_to_images(context, context.partial_x_samples)
|
||||
else:
|
||||
images = latent_samples_to_images(context, context.partial_x_samples)
|
||||
else:
|
||||
images = None
|
||||
|
||||
if callback:
|
||||
callback(images, i, *args)
|
||||
|
||||
if context.stop_processing:
|
||||
raise UserInitiatedStop("User requested that we stop processing")
|
||||
|
||||
return on_step
|
||||
|
||||
|
||||
def convert_ED_controlnet_filter_name(filter):
|
||||
def cn(n):
|
||||
if n.startswith("controlnet_"):
|
||||
return n[len("controlnet_") :]
|
||||
return n
|
||||
|
||||
if isinstance(filter, list):
|
||||
return [cn(f) for f in filter]
|
||||
return cn(filter)
|
155
ui/easydiffusion/backends/webui/__init__.py
Normal file
155
ui/easydiffusion/backends/webui/__init__.py
Normal file
@ -0,0 +1,155 @@
|
||||
import os
|
||||
import platform
|
||||
import subprocess
|
||||
import threading
|
||||
from threading import local
|
||||
import psutil
|
||||
|
||||
from easydiffusion.app import ROOT_DIR, getConfig
|
||||
|
||||
from . import impl
|
||||
from .impl import (
|
||||
ping,
|
||||
load_model,
|
||||
unload_model,
|
||||
set_options,
|
||||
generate_images,
|
||||
filter_images,
|
||||
get_url,
|
||||
stop_rendering,
|
||||
refresh_models,
|
||||
list_controlnet_filters,
|
||||
)
|
||||
|
||||
|
||||
ed_info = {
|
||||
"name": "WebUI backend for Easy Diffusion",
|
||||
"version": (1, 0, 0),
|
||||
"type": "backend",
|
||||
}
|
||||
|
||||
BACKEND_DIR = os.path.abspath(os.path.join(ROOT_DIR, "webui"))
|
||||
SYSTEM_DIR = os.path.join(BACKEND_DIR, "system")
|
||||
WEBUI_DIR = os.path.join(BACKEND_DIR, "webui")
|
||||
|
||||
backend_process = None
|
||||
|
||||
|
||||
def install_backend():
|
||||
pass
|
||||
|
||||
|
||||
def start_backend():
|
||||
config = getConfig()
|
||||
backend_config = config.get("backend_config", {})
|
||||
|
||||
if not os.path.exists(BACKEND_DIR):
|
||||
install_backend()
|
||||
|
||||
impl.WEBUI_HOST = backend_config.get("host", "localhost")
|
||||
impl.WEBUI_PORT = backend_config.get("port", "7860")
|
||||
|
||||
env = dict(os.environ)
|
||||
env.update(get_env())
|
||||
|
||||
def target():
|
||||
global backend_process
|
||||
|
||||
cmd = "webui.bat" if platform.system() == "Windows" else "webui.sh"
|
||||
print("starting", cmd, WEBUI_DIR)
|
||||
backend_process = subprocess.Popen([cmd], shell=True, cwd=WEBUI_DIR, env=env)
|
||||
|
||||
backend_thread = threading.Thread(target=target)
|
||||
backend_thread.start()
|
||||
|
||||
|
||||
def stop_backend():
|
||||
global backend_process
|
||||
|
||||
if backend_process:
|
||||
kill(backend_process.pid)
|
||||
|
||||
backend_process = None
|
||||
|
||||
|
||||
def uninstall_backend():
|
||||
pass
|
||||
|
||||
|
||||
def create_context():
|
||||
context = local()
|
||||
|
||||
# temp hack, throws an attribute not found error otherwise
|
||||
context.device = "cuda:0"
|
||||
context.half_precision = True
|
||||
context.vram_usage_level = None
|
||||
|
||||
context.models = {}
|
||||
context.model_paths = {}
|
||||
context.model_configs = {}
|
||||
context.device_name = None
|
||||
context.vram_optimizations = set()
|
||||
context.vram_usage_level = "balanced"
|
||||
context.test_diffusers = False
|
||||
context.enable_codeformer = False
|
||||
|
||||
return context
|
||||
|
||||
|
||||
def get_env():
|
||||
dir = os.path.abspath(SYSTEM_DIR)
|
||||
|
||||
if not os.path.exists(dir):
|
||||
raise RuntimeError("The system folder is missing!")
|
||||
|
||||
config = getConfig()
|
||||
models_dir = config.get("models_dir", os.path.join(ROOT_DIR, "models"))
|
||||
embeddings_dir = os.path.join(models_dir, "embeddings")
|
||||
|
||||
env_entries = {
|
||||
"PATH": [
|
||||
f"{dir}/git/bin",
|
||||
f"{dir}/python",
|
||||
f"{dir}/python/Library/bin",
|
||||
f"{dir}/python/Scripts",
|
||||
f"{dir}/python/Library/usr/bin",
|
||||
],
|
||||
"PYTHONPATH": [
|
||||
f"{dir}/python",
|
||||
f"{dir}/python/lib/site-packages",
|
||||
f"{dir}/python/lib/python3.10/site-packages",
|
||||
],
|
||||
"PYTHONHOME": [],
|
||||
"PY_LIBS": [f"{dir}/python/Scripts/Lib", f"{dir}/python/Scripts/Lib/site-packages"],
|
||||
"PY_PIP": [f"{dir}/python/Scripts"],
|
||||
"PIP_INSTALLER_LOCATION": [f"{dir}/python/get-pip.py"],
|
||||
"TRANSFORMERS_CACHE": [f"{dir}/transformers-cache"],
|
||||
"HF_HUB_DISABLE_SYMLINKS_WARNING": ["true"],
|
||||
"COMMANDLINE_ARGS": [f'--api --models-dir "{models_dir}" --embeddings-dir "{embeddings_dir}"'],
|
||||
"SKIP_VENV": ["1"],
|
||||
"SD_WEBUI_RESTARTING": ["1"],
|
||||
"PYTHON": [f"{dir}/python/python"],
|
||||
"GIT": [f"{dir}/git/bin/git"],
|
||||
}
|
||||
|
||||
if platform.system() == "Windows":
|
||||
env_entries["PYTHONNOUSERSITE"] = ["1"]
|
||||
else:
|
||||
env_entries["PYTHONNOUSERSITE"] = ["y"]
|
||||
|
||||
env = {}
|
||||
for key, paths in env_entries.items():
|
||||
paths = [p.replace("/", os.path.sep) for p in paths]
|
||||
paths = os.pathsep.join(paths)
|
||||
|
||||
env[key] = paths
|
||||
|
||||
return env
|
||||
|
||||
|
||||
# https://stackoverflow.com/a/25134985
|
||||
def kill(proc_pid):
|
||||
process = psutil.Process(proc_pid)
|
||||
for proc in process.children(recursive=True):
|
||||
proc.kill()
|
||||
process.kill()
|
639
ui/easydiffusion/backends/webui/impl.py
Normal file
639
ui/easydiffusion/backends/webui/impl.py
Normal file
@ -0,0 +1,639 @@
|
||||
import os
|
||||
import requests
|
||||
from requests.exceptions import ConnectTimeout
|
||||
from typing import Union, List
|
||||
from threading import local as Context
|
||||
from threading import Thread
|
||||
import uuid
|
||||
import time
|
||||
from copy import deepcopy
|
||||
|
||||
from sdkit.utils import base64_str_to_img, img_to_base64_str
|
||||
|
||||
WEBUI_HOST = "localhost"
|
||||
WEBUI_PORT = "7860"
|
||||
|
||||
DEFAULT_WEBUI_OPTIONS = {"show_progress_every_n_steps": 3, "show_progress_grid": True, "live_previews_enable": False}
|
||||
|
||||
|
||||
webui_opts: dict = None
|
||||
|
||||
|
||||
curr_models = {
|
||||
"stable-diffusion": None,
|
||||
"vae": None,
|
||||
}
|
||||
|
||||
|
||||
def set_options(context, **kwargs):
|
||||
changed_opts = {}
|
||||
|
||||
opts_mapping = {
|
||||
"stream_image_progress": ("live_previews_enable", bool),
|
||||
"stream_image_progress_interval": ("show_progress_every_n_steps", int),
|
||||
"clip_skip": ("CLIP_stop_at_last_layers", int),
|
||||
"clip_skip_sdxl": ("sdxl_clip_l_skip", bool),
|
||||
"output_format": ("samples_format", str),
|
||||
}
|
||||
|
||||
for ed_key, webui_key in opts_mapping.items():
|
||||
webui_key, webui_type = webui_key
|
||||
|
||||
if ed_key in kwargs and (webui_opts is None or webui_opts.get(webui_key, False) != webui_type(kwargs[ed_key])):
|
||||
changed_opts[webui_key] = webui_type(kwargs[ed_key])
|
||||
|
||||
if changed_opts:
|
||||
changed_opts["sd_model_checkpoint"] = curr_models["stable-diffusion"]
|
||||
|
||||
print(f"Got options: {kwargs}. Sending options: {changed_opts}")
|
||||
|
||||
try:
|
||||
res = webui_post("/sdapi/v1/options", json=changed_opts)
|
||||
if res.status_code != 200:
|
||||
raise Exception(res.text)
|
||||
|
||||
webui_opts.update(changed_opts)
|
||||
except Exception as e:
|
||||
print(f"Error setting options: {e}")
|
||||
|
||||
|
||||
def ping(timeout=1):
|
||||
"timeout (in seconds)"
|
||||
|
||||
global webui_opts
|
||||
|
||||
try:
|
||||
webui_get("/internal/ping", timeout=timeout)
|
||||
|
||||
if webui_opts is None:
|
||||
try:
|
||||
res = webui_post("/sdapi/v1/options", json=DEFAULT_WEBUI_OPTIONS)
|
||||
if res.status_code != 200:
|
||||
raise Exception(res.text)
|
||||
except Exception as e:
|
||||
print(f"Error setting options: {e}")
|
||||
|
||||
try:
|
||||
res = webui_get("/sdapi/v1/options")
|
||||
if res.status_code != 200:
|
||||
raise Exception(res.text)
|
||||
|
||||
webui_opts = res.json()
|
||||
except Exception as e:
|
||||
print(f"Error setting options: {e}")
|
||||
|
||||
return True
|
||||
except ConnectTimeout as e:
|
||||
raise TimeoutError(e)
|
||||
|
||||
|
||||
def load_model(context, model_type, **kwargs):
|
||||
model_path = context.model_paths[model_type]
|
||||
|
||||
if webui_opts is None:
|
||||
print("Server not ready, can't set the model")
|
||||
return
|
||||
|
||||
if model_type == "stable-diffusion":
|
||||
model_name = os.path.basename(model_path)
|
||||
model_name = os.path.splitext(model_name)[0]
|
||||
print(f"setting sd model: {model_name}")
|
||||
if curr_models[model_type] != model_name:
|
||||
try:
|
||||
res = webui_post("/sdapi/v1/options", json={"sd_model_checkpoint": model_name})
|
||||
if res.status_code != 200:
|
||||
raise Exception(res.text)
|
||||
except Exception as e:
|
||||
raise RuntimeError(
|
||||
f"The engine failed to set the required options. Please check the logs in the command line window for more details."
|
||||
)
|
||||
|
||||
curr_models[model_type] = model_name
|
||||
elif model_type == "vae":
|
||||
if curr_models[model_type] != model_path:
|
||||
vae_model = [model_path] if model_path else []
|
||||
|
||||
opts = {"sd_model_checkpoint": curr_models["stable-diffusion"], "forge_additional_modules": vae_model}
|
||||
print("setting opts 2", opts)
|
||||
|
||||
try:
|
||||
res = webui_post("/sdapi/v1/options", json=opts)
|
||||
if res.status_code != 200:
|
||||
raise Exception(res.text)
|
||||
except Exception as e:
|
||||
raise RuntimeError(
|
||||
f"The engine failed to set the required options. Please check the logs in the command line window for more details."
|
||||
)
|
||||
|
||||
curr_models[model_type] = model_path
|
||||
|
||||
|
||||
def unload_model(context, model_type, **kwargs):
|
||||
pass
|
||||
|
||||
|
||||
def generate_images(
|
||||
context: Context,
|
||||
prompt: str = "",
|
||||
negative_prompt: str = "",
|
||||
seed: int = 42,
|
||||
width: int = 512,
|
||||
height: int = 512,
|
||||
num_outputs: int = 1,
|
||||
num_inference_steps: int = 25,
|
||||
guidance_scale: float = 7.5,
|
||||
init_image=None,
|
||||
init_image_mask=None,
|
||||
control_image=None,
|
||||
control_alpha=1.0,
|
||||
controlnet_filter=None,
|
||||
prompt_strength: float = 0.8,
|
||||
preserve_init_image_color_profile=False,
|
||||
strict_mask_border=False,
|
||||
sampler_name: str = "euler_a",
|
||||
hypernetwork_strength: float = 0,
|
||||
tiling=None,
|
||||
lora_alpha: Union[float, List[float]] = 0,
|
||||
sampler_params={},
|
||||
callback=None,
|
||||
output_type="pil",
|
||||
):
|
||||
|
||||
task_id = str(uuid.uuid4())
|
||||
|
||||
sampler_name = convert_ED_sampler_names(sampler_name)
|
||||
controlnet_filter = convert_ED_controlnet_filter_name(controlnet_filter)
|
||||
|
||||
cmd = {
|
||||
"force_task_id": task_id,
|
||||
"prompt": prompt,
|
||||
"negative_prompt": negative_prompt,
|
||||
"sampler_name": sampler_name,
|
||||
"scheduler": "simple",
|
||||
"steps": num_inference_steps,
|
||||
"seed": seed,
|
||||
"cfg_scale": guidance_scale,
|
||||
"batch_size": num_outputs,
|
||||
"width": width,
|
||||
"height": height,
|
||||
}
|
||||
|
||||
if init_image:
|
||||
cmd["init_images"] = [init_image]
|
||||
cmd["denoising_strength"] = prompt_strength
|
||||
if init_image_mask:
|
||||
cmd["mask"] = init_image_mask
|
||||
cmd["include_init_images"] = True
|
||||
cmd["inpainting_fill"] = 1
|
||||
cmd["initial_noise_multiplier"] = 1
|
||||
cmd["inpaint_full_res"] = 1
|
||||
|
||||
if context.model_paths.get("lora"):
|
||||
lora_model = context.model_paths["lora"]
|
||||
lora_model = lora_model if isinstance(lora_model, list) else [lora_model]
|
||||
lora_alpha = lora_alpha if isinstance(lora_alpha, list) else [lora_alpha]
|
||||
|
||||
for lora, alpha in zip(lora_model, lora_alpha):
|
||||
lora = os.path.basename(lora)
|
||||
lora = os.path.splitext(lora)[0]
|
||||
cmd["prompt"] += f" <lora:{lora}:{alpha}>"
|
||||
|
||||
if controlnet_filter and control_image and context.model_paths.get("controlnet"):
|
||||
controlnet_model = context.model_paths["controlnet"]
|
||||
|
||||
model_hash = auto1111_hash(controlnet_model)
|
||||
controlnet_model = os.path.basename(controlnet_model)
|
||||
controlnet_model = os.path.splitext(controlnet_model)[0]
|
||||
print(f"setting controlnet model: {controlnet_model}")
|
||||
controlnet_model = f"{controlnet_model} [{model_hash}]"
|
||||
|
||||
cmd["alwayson_scripts"] = {
|
||||
"controlnet": {
|
||||
"args": [
|
||||
{
|
||||
"image": control_image,
|
||||
"weight": control_alpha,
|
||||
"module": controlnet_filter,
|
||||
"model": controlnet_model,
|
||||
"resize_mode": "Crop and Resize",
|
||||
"threshold_a": 50,
|
||||
"threshold_b": 130,
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
operation_to_apply = "img2img" if init_image else "txt2img"
|
||||
|
||||
stream_image_progress = webui_opts.get("live_previews_enable", False)
|
||||
|
||||
progress_thread = Thread(
|
||||
target=image_progress_thread, args=(task_id, callback, stream_image_progress, num_outputs, num_inference_steps)
|
||||
)
|
||||
progress_thread.start()
|
||||
|
||||
print(f"task id: {task_id}")
|
||||
print_request(operation_to_apply, cmd)
|
||||
|
||||
res = webui_post(f"/sdapi/v1/{operation_to_apply}", json=cmd)
|
||||
if res.status_code == 200:
|
||||
res = res.json()
|
||||
else:
|
||||
raise Exception(
|
||||
"The engine failed while generating this image. Please check the logs in the command-line window for more details."
|
||||
)
|
||||
|
||||
import json
|
||||
|
||||
print(json.loads(res["info"])["infotexts"])
|
||||
|
||||
images = res["images"]
|
||||
if output_type == "pil":
|
||||
images = [base64_str_to_img(img) for img in images]
|
||||
elif output_type == "base64":
|
||||
images = [base64_buffer_to_base64_img(img) for img in images]
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def filter_images(context: Context, images, filters, filter_params={}, input_type="pil"):
|
||||
"""
|
||||
* context: Context
|
||||
* images: str or PIL.Image or list of str/PIL.Image - image to filter. if a string is passed, it needs to be a base64-encoded image
|
||||
* filters: filter_type (string) or list of strings
|
||||
* filter_params: dict
|
||||
|
||||
returns: [PIL.Image] - list of filtered images
|
||||
"""
|
||||
images = images if isinstance(images, list) else [images]
|
||||
filters = filters if isinstance(filters, list) else [filters]
|
||||
|
||||
if "nsfw_checker" in filters:
|
||||
filters.remove("nsfw_checker") # handled by ED directly
|
||||
|
||||
args = {}
|
||||
controlnet_filters = []
|
||||
|
||||
print(filter_params)
|
||||
|
||||
for filter_name in filters:
|
||||
params = filter_params.get(filter_name, {})
|
||||
|
||||
if filter_name == "gfpgan":
|
||||
args["gfpgan_visibility"] = 1
|
||||
|
||||
if filter_name in ("realesrgan", "esrgan_4x", "lanczos", "nearest", "scunet", "swinir"):
|
||||
args["upscaler_1"] = params.get("upscaler", "RealESRGAN_x4plus")
|
||||
args["upscaling_resize"] = params.get("scale", 4)
|
||||
|
||||
if args["upscaler_1"] == "RealESRGAN_x4plus":
|
||||
args["upscaler_1"] = "R-ESRGAN 4x+"
|
||||
elif args["upscaler_1"] == "RealESRGAN_x4plus_anime_6B":
|
||||
args["upscaler_1"] = "R-ESRGAN 4x+ Anime6B"
|
||||
|
||||
if filter_name == "codeformer":
|
||||
args["codeformer_visibility"] = 1
|
||||
args["codeformer_weight"] = params.get("codeformer_fidelity", 0.5)
|
||||
|
||||
if filter_name.startswith("controlnet_"):
|
||||
filter_name = convert_ED_controlnet_filter_name(filter_name)
|
||||
controlnet_filters.append(filter_name)
|
||||
|
||||
print(f"filtering {len(images)} images with {args}. {controlnet_filters=}")
|
||||
|
||||
if len(filters) > len(controlnet_filters):
|
||||
filtered_images = extra_batch_images(images, input_type=input_type, **args)
|
||||
else:
|
||||
filtered_images = images
|
||||
|
||||
for filter_name in controlnet_filters:
|
||||
filtered_images = controlnet_filter(filtered_images, module=filter_name, input_type=input_type)
|
||||
|
||||
return filtered_images
|
||||
|
||||
|
||||
def get_url():
|
||||
return f"//{WEBUI_HOST}:{WEBUI_PORT}/?__theme=dark"
|
||||
|
||||
|
||||
def stop_rendering(context):
|
||||
try:
|
||||
res = webui_post("/sdapi/v1/interrupt")
|
||||
if res.status_code != 200:
|
||||
raise Exception(res.text)
|
||||
except Exception as e:
|
||||
print(f"Error interrupting webui: {e}")
|
||||
|
||||
|
||||
def refresh_models():
|
||||
def make_refresh_call(type):
|
||||
try:
|
||||
webui_post(f"/sdapi/v1/refresh-{type}")
|
||||
except:
|
||||
pass
|
||||
|
||||
try:
|
||||
for type in ("checkpoints", "vae"):
|
||||
t = Thread(target=make_refresh_call, args=(type,))
|
||||
t.start()
|
||||
except Exception as e:
|
||||
print(f"Error refreshing models: {e}")
|
||||
|
||||
|
||||
def list_controlnet_filters():
|
||||
return [
|
||||
"openpose",
|
||||
"openpose_face",
|
||||
"openpose_faceonly",
|
||||
"openpose_hand",
|
||||
"openpose_full",
|
||||
"animal_openpose",
|
||||
"densepose_parula (black bg & blue torso)",
|
||||
"densepose (pruple bg & purple torso)",
|
||||
"dw_openpose_full",
|
||||
"mediapipe_face",
|
||||
"instant_id_face_keypoints",
|
||||
"InsightFace+CLIP-H (IPAdapter)",
|
||||
"InsightFace (InstantID)",
|
||||
"canny",
|
||||
"mlsd",
|
||||
"scribble_hed",
|
||||
"scribble_hedsafe",
|
||||
"scribble_pidinet",
|
||||
"scribble_pidsafe",
|
||||
"scribble_xdog",
|
||||
"softedge_hed",
|
||||
"softedge_hedsafe",
|
||||
"softedge_pidinet",
|
||||
"softedge_pidsafe",
|
||||
"softedge_teed",
|
||||
"normal_bae",
|
||||
"depth_midas",
|
||||
"normal_midas",
|
||||
"depth_zoe",
|
||||
"depth_leres",
|
||||
"depth_leres++",
|
||||
"depth_anything_v2",
|
||||
"depth_anything",
|
||||
"depth_hand_refiner",
|
||||
"depth_marigold",
|
||||
"lineart_coarse",
|
||||
"lineart_realistic",
|
||||
"lineart_anime",
|
||||
"lineart_standard (from white bg & black line)",
|
||||
"lineart_anime_denoise",
|
||||
"reference_adain",
|
||||
"reference_only",
|
||||
"reference_adain+attn",
|
||||
"tile_colorfix",
|
||||
"tile_resample",
|
||||
"tile_colorfix+sharp",
|
||||
"CLIP-ViT-H (IPAdapter)",
|
||||
"CLIP-G (Revision)",
|
||||
"CLIP-G (Revision ignore prompt)",
|
||||
"CLIP-ViT-bigG (IPAdapter)",
|
||||
"InsightFace+CLIP-H (IPAdapter)",
|
||||
"inpaint_only",
|
||||
"inpaint_only+lama",
|
||||
"inpaint_global_harmonious",
|
||||
"seg_ufade20k",
|
||||
"seg_ofade20k",
|
||||
"seg_anime_face",
|
||||
"seg_ofcoco",
|
||||
"shuffle",
|
||||
"segment",
|
||||
"invert (from white bg & black line)",
|
||||
"threshold",
|
||||
"t2ia_sketch_pidi",
|
||||
"t2ia_color_grid",
|
||||
"recolor_intensity",
|
||||
"recolor_luminance",
|
||||
"blur_gaussian",
|
||||
]
|
||||
|
||||
|
||||
def controlnet_filter(images, module="none", processor_res=512, threshold_a=64, threshold_b=64, input_type="pil"):
|
||||
if input_type == "pil":
|
||||
images = [img_to_base64_str(x) for x in images]
|
||||
|
||||
payload = {
|
||||
"controlnet_module": module,
|
||||
"controlnet_input_images": images,
|
||||
"controlnet_processor_res": processor_res,
|
||||
"controlnet_threshold_a": threshold_a,
|
||||
"controlnet_threshold_b": threshold_b,
|
||||
}
|
||||
res = webui_post("/controlnet/detect", json=payload)
|
||||
res = res.json()
|
||||
filtered_images = res["images"]
|
||||
|
||||
if input_type == "pil":
|
||||
filtered_images = [base64_str_to_img(img) for img in filtered_images]
|
||||
elif input_type == "base64":
|
||||
filtered_images = [base64_buffer_to_base64_img(img) for img in filtered_images]
|
||||
|
||||
return filtered_images
|
||||
|
||||
|
||||
def image_progress_thread(task_id, callback, stream_image_progress, total_images, total_steps):
|
||||
from PIL import Image
|
||||
|
||||
last_preview_id = -1
|
||||
|
||||
EMPTY_IMAGE = Image.new("RGB", (1, 1))
|
||||
|
||||
while True:
|
||||
res = webui_post(
|
||||
f"/internal/progress",
|
||||
json={"id_task": task_id, "live_preview": stream_image_progress, "id_live_preview": last_preview_id},
|
||||
)
|
||||
if res.status_code == 200:
|
||||
res = res.json()
|
||||
|
||||
last_preview_id = res["id_live_preview"]
|
||||
|
||||
if res["progress"] is not None:
|
||||
step_num = int(res["progress"] * total_steps)
|
||||
|
||||
if res["live_preview"] is not None:
|
||||
img = res["live_preview"]
|
||||
img = base64_str_to_img(img)
|
||||
images = [EMPTY_IMAGE] * total_images
|
||||
images[0] = img
|
||||
else:
|
||||
images = None
|
||||
|
||||
callback(images, step_num)
|
||||
|
||||
if res["completed"] == True:
|
||||
print("Complete!")
|
||||
break
|
||||
|
||||
time.sleep(0.5)
|
||||
|
||||
|
||||
def webui_get(uri, *args, **kwargs):
|
||||
url = f"http://{WEBUI_HOST}:{WEBUI_PORT}{uri}"
|
||||
return requests.get(url, *args, **kwargs)
|
||||
|
||||
|
||||
def webui_post(uri, *args, **kwargs):
|
||||
url = f"http://{WEBUI_HOST}:{WEBUI_PORT}{uri}"
|
||||
return requests.post(url, *args, **kwargs)
|
||||
|
||||
|
||||
def print_request(operation_to_apply, args):
|
||||
args = deepcopy(args)
|
||||
if "init_images" in args:
|
||||
args["init_images"] = ["img" for _ in args["init_images"]]
|
||||
if "mask" in args:
|
||||
args["mask"] = "mask_img"
|
||||
|
||||
controlnet_args = args.get("alwayson_scripts", {}).get("controlnet", {}).get("args", [])
|
||||
if controlnet_args:
|
||||
controlnet_args[0]["image"] = "control_image"
|
||||
|
||||
print(f"operation: {operation_to_apply}, args: {args}")
|
||||
|
||||
|
||||
def auto1111_hash(file_path):
|
||||
import hashlib
|
||||
|
||||
with open(file_path, "rb") as f:
|
||||
f.seek(0x100000)
|
||||
b = f.read(0x10000)
|
||||
return hashlib.sha256(b).hexdigest()[:8]
|
||||
|
||||
|
||||
def extra_batch_images(
|
||||
images, # list of PIL images
|
||||
name_list=None, # list of image names
|
||||
resize_mode=0,
|
||||
show_extras_results=True,
|
||||
gfpgan_visibility=0,
|
||||
codeformer_visibility=0,
|
||||
codeformer_weight=0,
|
||||
upscaling_resize=2,
|
||||
upscaling_resize_w=512,
|
||||
upscaling_resize_h=512,
|
||||
upscaling_crop=True,
|
||||
upscaler_1="None",
|
||||
upscaler_2="None",
|
||||
extras_upscaler_2_visibility=0,
|
||||
upscale_first=False,
|
||||
use_async=False,
|
||||
input_type="pil",
|
||||
):
|
||||
if name_list is not None:
|
||||
if len(name_list) != len(images):
|
||||
raise RuntimeError("len(images) != len(name_list)")
|
||||
else:
|
||||
name_list = [f"image{i + 1:05}" for i in range(len(images))]
|
||||
|
||||
if input_type == "pil":
|
||||
images = [img_to_base64_str(x) for x in images]
|
||||
|
||||
image_list = []
|
||||
for name, image in zip(name_list, images):
|
||||
image_list.append({"data": image, "name": name})
|
||||
|
||||
payload = {
|
||||
"resize_mode": resize_mode,
|
||||
"show_extras_results": show_extras_results,
|
||||
"gfpgan_visibility": gfpgan_visibility,
|
||||
"codeformer_visibility": codeformer_visibility,
|
||||
"codeformer_weight": codeformer_weight,
|
||||
"upscaling_resize": upscaling_resize,
|
||||
"upscaling_resize_w": upscaling_resize_w,
|
||||
"upscaling_resize_h": upscaling_resize_h,
|
||||
"upscaling_crop": upscaling_crop,
|
||||
"upscaler_1": upscaler_1,
|
||||
"upscaler_2": upscaler_2,
|
||||
"extras_upscaler_2_visibility": extras_upscaler_2_visibility,
|
||||
"upscale_first": upscale_first,
|
||||
"imageList": image_list,
|
||||
}
|
||||
|
||||
res = webui_post("/sdapi/v1/extra-batch-images", json=payload)
|
||||
if res.status_code == 200:
|
||||
res = res.json()
|
||||
else:
|
||||
raise Exception(
|
||||
"The engine failed while filtering this image. Please check the logs in the command-line window for more details."
|
||||
)
|
||||
|
||||
images = res["images"]
|
||||
|
||||
if input_type == "pil":
|
||||
images = [base64_str_to_img(img) for img in images]
|
||||
elif input_type == "base64":
|
||||
images = [base64_buffer_to_base64_img(img) for img in images]
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def base64_buffer_to_base64_img(img):
|
||||
output_format = webui_opts.get("samples_format", "jpeg")
|
||||
mime_type = f"image/{output_format.lower()}"
|
||||
return f"data:{mime_type};base64," + img
|
||||
|
||||
|
||||
def convert_ED_sampler_names(sampler_name):
|
||||
name_mapping = {
|
||||
"dpmpp_2m": "DPM++ 2M",
|
||||
"dpmpp_sde": "DPM++ SDE",
|
||||
"dpmpp_2m_sde": "DPM++ 2M SDE",
|
||||
"dpmpp_2m_sde_heun": "DPM++ 2M SDE Heun",
|
||||
"dpmpp_2s_a": "DPM++ 2S a",
|
||||
"dpmpp_3m_sde": "DPM++ 3M SDE",
|
||||
"euler_a": "Euler a",
|
||||
"euler": "Euler",
|
||||
"lms": "LMS",
|
||||
"heun": "Heun",
|
||||
"dpm2": "DPM2",
|
||||
"dpm2_a": "DPM2 a",
|
||||
"dpm_fast": "DPM fast",
|
||||
"dpm_adaptive": "DPM adaptive",
|
||||
"restart": "Restart",
|
||||
"heun_pp2": "HeunPP2",
|
||||
"ipndm": "IPNDM",
|
||||
"ipndm_v": "IPNDM_V",
|
||||
"deis": "DEIS",
|
||||
"ddim": "DDIM",
|
||||
"ddim_cfgpp": "DDIM CFG++",
|
||||
"plms": "PLMS",
|
||||
"unipc": "UniPC",
|
||||
"lcm": "LCM",
|
||||
"ddpm": "DDPM",
|
||||
"forge_flux_realistic": "[Forge] Flux Realistic",
|
||||
"forge_flux_realistic_slow": "[Forge] Flux Realistic (Slow)",
|
||||
# deprecated samplers in 3.5
|
||||
"dpm_solver_stability": None,
|
||||
"unipc_snr": None,
|
||||
"unipc_tu": None,
|
||||
"unipc_snr_2": None,
|
||||
"unipc_tu_2": None,
|
||||
"unipc_tq": None,
|
||||
}
|
||||
return name_mapping.get(sampler_name)
|
||||
|
||||
|
||||
def convert_ED_controlnet_filter_name(filter):
|
||||
if filter is None:
|
||||
return None
|
||||
|
||||
def cn(n):
|
||||
if n.startswith("controlnet_"):
|
||||
return n[len("controlnet_") :]
|
||||
return n
|
||||
|
||||
mapping = {
|
||||
"controlnet_scribble_hedsafe": None,
|
||||
"controlnet_scribble_pidsafe": None,
|
||||
"controlnet_softedge_pidsafe": "controlnet_softedge_pidisafe",
|
||||
"controlnet_normal_bae": "controlnet_normalbae",
|
||||
"controlnet_segment": None,
|
||||
}
|
||||
if isinstance(filter, list):
|
||||
return [cn(mapping.get(f, f)) for f in filter]
|
||||
return cn(mapping.get(filter, filter))
|
@ -33,4 +33,3 @@ class Bucket(BucketBase):
|
||||
|
||||
class Config:
|
||||
orm_mode = True
|
||||
|
||||
|
@ -8,7 +8,7 @@ from easydiffusion import app
|
||||
from easydiffusion.types import ModelsData
|
||||
from easydiffusion.utils import log
|
||||
from sdkit import Context
|
||||
from sdkit.models import load_model, scan_model, unload_model, download_model, get_model_info_from_db
|
||||
from sdkit.models import scan_model, download_model, get_model_info_from_db
|
||||
from sdkit.models.model_loader.controlnet_filters import filters as cn_filters
|
||||
from sdkit.utils import hash_file_quick
|
||||
from sdkit.models.model_loader.embeddings import get_embedding_token
|
||||
@ -25,15 +25,15 @@ KNOWN_MODEL_TYPES = [
|
||||
"controlnet",
|
||||
]
|
||||
MODEL_EXTENSIONS = {
|
||||
"stable-diffusion": [".ckpt", ".safetensors"],
|
||||
"vae": [".vae.pt", ".ckpt", ".safetensors"],
|
||||
"hypernetwork": [".pt", ".safetensors"],
|
||||
"stable-diffusion": [".ckpt", ".safetensors", ".sft", ".gguf"],
|
||||
"vae": [".vae.pt", ".ckpt", ".safetensors", ".sft"],
|
||||
"hypernetwork": [".pt", ".safetensors", ".sft"],
|
||||
"gfpgan": [".pth"],
|
||||
"realesrgan": [".pth"],
|
||||
"lora": [".ckpt", ".safetensors", ".pt"],
|
||||
"lora": [".ckpt", ".safetensors", ".sft", ".pt"],
|
||||
"codeformer": [".pth"],
|
||||
"embeddings": [".pt", ".bin", ".safetensors"],
|
||||
"controlnet": [".pth", ".safetensors"],
|
||||
"embeddings": [".pt", ".bin", ".safetensors", ".sft"],
|
||||
"controlnet": [".pth", ".safetensors", ".sft"],
|
||||
}
|
||||
DEFAULT_MODELS = {
|
||||
"stable-diffusion": [
|
||||
@ -63,6 +63,7 @@ def init():
|
||||
|
||||
def load_default_models(context: Context):
|
||||
from easydiffusion import runtime
|
||||
from easydiffusion.backend_manager import backend
|
||||
|
||||
runtime.set_vram_optimizations(context)
|
||||
|
||||
@ -70,7 +71,7 @@ def load_default_models(context: Context):
|
||||
for model_type in MODELS_TO_LOAD_ON_START:
|
||||
context.model_paths[model_type] = resolve_model_to_use(model_type=model_type, fail_if_not_found=False)
|
||||
try:
|
||||
load_model(
|
||||
backend.load_model(
|
||||
context,
|
||||
model_type,
|
||||
scan_model=context.model_paths[model_type] != None
|
||||
@ -92,8 +93,10 @@ def load_default_models(context: Context):
|
||||
|
||||
|
||||
def unload_all(context: Context):
|
||||
from easydiffusion.backend_manager import backend
|
||||
|
||||
for model_type in KNOWN_MODEL_TYPES:
|
||||
unload_model(context, model_type)
|
||||
backend.unload_model(context, model_type)
|
||||
if model_type in context.model_load_errors:
|
||||
del context.model_load_errors[model_type]
|
||||
|
||||
@ -154,6 +157,8 @@ def resolve_model_to_use_single(model_name: str = None, model_type: str = None,
|
||||
|
||||
|
||||
def reload_models_if_necessary(context: Context, models_data: ModelsData, models_to_force_reload: list = []):
|
||||
from easydiffusion.backend_manager import backend
|
||||
|
||||
models_to_reload = {
|
||||
model_type: path
|
||||
for model_type, path in models_data.model_paths.items()
|
||||
@ -175,7 +180,7 @@ def reload_models_if_necessary(context: Context, models_data: ModelsData, models
|
||||
for model_type, model_path_in_req in models_to_reload.items():
|
||||
context.model_paths[model_type] = model_path_in_req
|
||||
|
||||
action_fn = unload_model if context.model_paths[model_type] is None else load_model
|
||||
action_fn = backend.unload_model if context.model_paths[model_type] is None else backend.load_model
|
||||
extra_params = models_data.model_params.get(model_type, {})
|
||||
try:
|
||||
action_fn(context, model_type, scan_model=False, **extra_params) # we've scanned them already
|
||||
@ -183,14 +188,23 @@ def reload_models_if_necessary(context: Context, models_data: ModelsData, models
|
||||
del context.model_load_errors[model_type]
|
||||
except Exception as e:
|
||||
log.exception(e)
|
||||
if action_fn == load_model:
|
||||
if action_fn == backend.load_model:
|
||||
context.model_load_errors[model_type] = str(e) # storing the entire Exception can lead to memory leaks
|
||||
|
||||
|
||||
def resolve_model_paths(models_data: ModelsData):
|
||||
model_paths = models_data.model_paths
|
||||
skip_models = cn_filters + [
|
||||
"latent_upscaler",
|
||||
"nsfw_checker",
|
||||
"esrgan_4x",
|
||||
"lanczos",
|
||||
"nearest",
|
||||
"scunet",
|
||||
"swinir",
|
||||
]
|
||||
|
||||
for model_type in model_paths:
|
||||
skip_models = cn_filters + ["latent_upscaler", "nsfw_checker"]
|
||||
if model_type in skip_models: # doesn't use model paths
|
||||
continue
|
||||
if model_type == "codeformer" and model_paths[model_type]:
|
||||
@ -320,6 +334,10 @@ def is_malicious_model(file_path):
|
||||
|
||||
|
||||
def getModels(scan_for_malicious: bool = True):
|
||||
from easydiffusion.backend_manager import backend
|
||||
|
||||
backend.refresh_models()
|
||||
|
||||
models = {
|
||||
"options": {
|
||||
"stable-diffusion": [],
|
||||
@ -329,19 +347,19 @@ def getModels(scan_for_malicious: bool = True):
|
||||
"codeformer": [{"codeformer": "CodeFormer"}],
|
||||
"embeddings": [],
|
||||
"controlnet": [
|
||||
{"control_v11p_sd15_canny": "Canny (*)"},
|
||||
{"control_v11p_sd15_openpose": "OpenPose (*)"},
|
||||
{"control_v11p_sd15_normalbae": "Normal BAE (*)"},
|
||||
{"control_v11f1p_sd15_depth": "Depth (*)"},
|
||||
{"control_v11p_sd15_scribble": "Scribble"},
|
||||
{"control_v11p_sd15_softedge": "Soft Edge"},
|
||||
{"control_v11p_sd15_inpaint": "Inpaint"},
|
||||
{"control_v11p_sd15_lineart": "Line Art"},
|
||||
{"control_v11p_sd15s2_lineart_anime": "Line Art Anime"},
|
||||
{"control_v11p_sd15_mlsd": "Straight Lines"},
|
||||
{"control_v11p_sd15_seg": "Segment"},
|
||||
{"control_v11e_sd15_shuffle": "Shuffle"},
|
||||
{"control_v11f1e_sd15_tile": "Tile"},
|
||||
# {"control_v11p_sd15_canny": "Canny (*)"},
|
||||
# {"control_v11p_sd15_openpose": "OpenPose (*)"},
|
||||
# {"control_v11p_sd15_normalbae": "Normal BAE (*)"},
|
||||
# {"control_v11f1p_sd15_depth": "Depth (*)"},
|
||||
# {"control_v11p_sd15_scribble": "Scribble"},
|
||||
# {"control_v11p_sd15_softedge": "Soft Edge"},
|
||||
# {"control_v11p_sd15_inpaint": "Inpaint"},
|
||||
# {"control_v11p_sd15_lineart": "Line Art"},
|
||||
# {"control_v11p_sd15s2_lineart_anime": "Line Art Anime"},
|
||||
# {"control_v11p_sd15_mlsd": "Straight Lines"},
|
||||
# {"control_v11p_sd15_seg": "Segment"},
|
||||
# {"control_v11e_sd15_shuffle": "Shuffle"},
|
||||
# {"control_v11f1e_sd15_tile": "Tile"},
|
||||
],
|
||||
},
|
||||
}
|
||||
@ -378,6 +396,8 @@ def getModels(scan_for_malicious: bool = True):
|
||||
model_id = entry.name[: -len(matching_suffix)]
|
||||
if callable(nameFilter):
|
||||
model_id = nameFilter(model_id)
|
||||
if model_id is None:
|
||||
continue
|
||||
|
||||
model_exists = False
|
||||
for m in tree: # allows default "named" models, like CodeFormer and known ControlNet models
|
||||
@ -416,7 +436,7 @@ def getModels(scan_for_malicious: bool = True):
|
||||
listModels(model_type="stable-diffusion")
|
||||
listModels(model_type="vae")
|
||||
listModels(model_type="hypernetwork")
|
||||
listModels(model_type="gfpgan")
|
||||
listModels(model_type="gfpgan", nameFilter=lambda x: (x if "gfpgan" in x.lower() else None))
|
||||
listModels(model_type="lora")
|
||||
listModels(model_type="embeddings", nameFilter=get_embedding_token)
|
||||
listModels(model_type="controlnet")
|
||||
|
@ -1,4 +1,5 @@
|
||||
"""
|
||||
(OUTDATED DOC)
|
||||
A runtime that runs on a specific device (in a thread).
|
||||
|
||||
It can run various tasks like image generation, image filtering, model merge etc by using that thread-local context.
|
||||
@ -6,42 +7,35 @@ It can run various tasks like image generation, image filtering, model merge etc
|
||||
This creates an `sdkit.Context` that's bound to the device specified while calling the `init()` function.
|
||||
"""
|
||||
|
||||
from easydiffusion import device_manager
|
||||
from easydiffusion.utils import log
|
||||
from sdkit import Context
|
||||
from sdkit.utils import get_device_usage
|
||||
|
||||
context = Context() # thread-local
|
||||
"""
|
||||
runtime data (bound locally to this thread), for e.g. device, references to loaded models, optimization flags etc
|
||||
"""
|
||||
context = None
|
||||
|
||||
|
||||
def init(device):
|
||||
"""
|
||||
Initializes the fields that will be bound to this runtime's context, and sets the current torch device
|
||||
"""
|
||||
|
||||
global context
|
||||
|
||||
from easydiffusion import device_manager
|
||||
from easydiffusion.backend_manager import backend
|
||||
from easydiffusion.app import getConfig
|
||||
|
||||
context = backend.create_context()
|
||||
|
||||
context.stop_processing = False
|
||||
context.temp_images = {}
|
||||
context.partial_x_samples = None
|
||||
context.model_load_errors = {}
|
||||
context.enable_codeformer = True
|
||||
|
||||
from easydiffusion import app
|
||||
|
||||
app_config = app.getConfig()
|
||||
context.test_diffusers = app_config.get("use_v3_engine", True)
|
||||
|
||||
log.info("Device usage during initialization:")
|
||||
get_device_usage(device, log_info=True, process_usage_only=False)
|
||||
|
||||
device_manager.device_init(context, device)
|
||||
|
||||
|
||||
def set_vram_optimizations(context: Context):
|
||||
from easydiffusion import app
|
||||
def set_vram_optimizations(context):
|
||||
from easydiffusion.app import getConfig
|
||||
|
||||
config = app.getConfig()
|
||||
config = getConfig()
|
||||
vram_usage_level = config.get("vram_usage_level", "balanced")
|
||||
|
||||
if vram_usage_level != context.vram_usage_level:
|
||||
|
@ -2,6 +2,7 @@
|
||||
Notes:
|
||||
async endpoints always run on the main thread. Without they run on the thread pool.
|
||||
"""
|
||||
|
||||
import datetime
|
||||
import mimetypes
|
||||
import os
|
||||
@ -20,6 +21,7 @@ from easydiffusion.types import (
|
||||
OutputFormatData,
|
||||
SaveToDiskData,
|
||||
convert_legacy_render_req_to_new,
|
||||
convert_legacy_controlnet_filter_name,
|
||||
)
|
||||
from easydiffusion.utils import log
|
||||
from fastapi import FastAPI, HTTPException
|
||||
@ -67,6 +69,7 @@ class SetAppConfigRequest(BaseModel, extra=Extra.allow):
|
||||
listen_to_network: bool = None
|
||||
listen_port: int = None
|
||||
use_v3_engine: bool = True
|
||||
backend: str = "ed_diffusers"
|
||||
models_dir: str = None
|
||||
|
||||
|
||||
@ -155,6 +158,12 @@ def init():
|
||||
def shutdown_event(): # Signal render thread to close on shutdown
|
||||
task_manager.current_state_error = SystemExit("Application shutting down.")
|
||||
|
||||
@server_api.on_event("startup")
|
||||
def start_event():
|
||||
from easydiffusion.app import open_browser
|
||||
|
||||
open_browser()
|
||||
|
||||
|
||||
# API implementations
|
||||
def set_app_config_internal(req: SetAppConfigRequest):
|
||||
@ -176,7 +185,8 @@ def set_app_config_internal(req: SetAppConfigRequest):
|
||||
config["net"] = {}
|
||||
config["net"]["listen_port"] = int(req.listen_port)
|
||||
|
||||
config["use_v3_engine"] = req.use_v3_engine
|
||||
config["use_v3_engine"] = req.backend == "ed_diffusers"
|
||||
config["backend"] = req.backend
|
||||
config["models_dir"] = req.models_dir
|
||||
|
||||
for property, property_value in req.dict().items():
|
||||
@ -216,6 +226,8 @@ def read_web_data_internal(key: str = None, **kwargs):
|
||||
|
||||
return JSONResponse(config, headers=NOCACHE_HEADERS)
|
||||
elif key == "system_info":
|
||||
from easydiffusion.backend_manager import backend
|
||||
|
||||
config = app.getConfig()
|
||||
|
||||
output_dir = config.get("force_save_path", os.path.join(os.path.expanduser("~"), app.OUTPUT_DIRNAME))
|
||||
@ -226,6 +238,7 @@ def read_web_data_internal(key: str = None, **kwargs):
|
||||
"default_output_dir": output_dir,
|
||||
"enforce_output_dir": ("force_save_path" in config),
|
||||
"enforce_output_metadata": ("force_save_metadata" in config),
|
||||
"backend_url": backend.get_url(),
|
||||
}
|
||||
system_info["devices"]["config"] = config.get("render_devices", "auto")
|
||||
return JSONResponse(system_info, headers=NOCACHE_HEADERS)
|
||||
@ -309,6 +322,15 @@ def filter_internal(req: dict):
|
||||
output_format: OutputFormatData = OutputFormatData.parse_obj(req)
|
||||
save_data: SaveToDiskData = SaveToDiskData.parse_obj(req)
|
||||
|
||||
filter_req.filter = convert_legacy_controlnet_filter_name(filter_req.filter)
|
||||
|
||||
for model_name in ("realesrgan", "esrgan_4x", "lanczos", "nearest", "scunet", "swinir"):
|
||||
if models_data.model_paths.get(model_name):
|
||||
if model_name not in filter_req.filter_params:
|
||||
filter_req.filter_params[model_name] = {}
|
||||
|
||||
filter_req.filter_params[model_name]["upscaler"] = models_data.model_paths[model_name]
|
||||
|
||||
# enqueue the task
|
||||
task = FilterTask(filter_req, task_data, models_data, output_format, save_data)
|
||||
return enqueue_task(task)
|
||||
|
@ -4,6 +4,7 @@ Notes:
|
||||
Use weak_thread_data to store all other data using weak keys.
|
||||
This will allow for garbage collection after the thread dies.
|
||||
"""
|
||||
|
||||
import json
|
||||
import traceback
|
||||
|
||||
@ -19,7 +20,6 @@ import torch
|
||||
from easydiffusion import device_manager
|
||||
from easydiffusion.tasks import Task
|
||||
from easydiffusion.utils import log
|
||||
from sdkit.utils import gc
|
||||
|
||||
THREAD_NAME_PREFIX = ""
|
||||
ERR_LOCK_FAILED = " failed to acquire lock within timeout."
|
||||
@ -233,6 +233,7 @@ def thread_render(device):
|
||||
global current_state, current_state_error
|
||||
|
||||
from easydiffusion import model_manager, runtime
|
||||
from easydiffusion.backend_manager import backend
|
||||
|
||||
try:
|
||||
runtime.init(device)
|
||||
@ -244,8 +245,17 @@ def thread_render(device):
|
||||
}
|
||||
|
||||
current_state = ServerStates.LoadingModel
|
||||
model_manager.load_default_models(runtime.context)
|
||||
|
||||
while True:
|
||||
try:
|
||||
if backend.ping(timeout=1):
|
||||
break
|
||||
|
||||
time.sleep(1)
|
||||
except TimeoutError:
|
||||
time.sleep(1)
|
||||
|
||||
model_manager.load_default_models(runtime.context)
|
||||
current_state = ServerStates.Online
|
||||
except Exception as e:
|
||||
log.error(traceback.format_exc())
|
||||
@ -291,7 +301,6 @@ def thread_render(device):
|
||||
task.buffer_queue.put(json.dumps(task.response))
|
||||
log.error(traceback.format_exc())
|
||||
finally:
|
||||
gc(runtime.context)
|
||||
task.lock.release()
|
||||
|
||||
keep_task_alive(task)
|
||||
|
@ -5,9 +5,7 @@ import time
|
||||
|
||||
from numpy import base_repr
|
||||
|
||||
from sdkit.filter import apply_filters
|
||||
from sdkit.models import load_model
|
||||
from sdkit.utils import img_to_base64_str, get_image, log, save_images
|
||||
from sdkit.utils import img_to_base64_str, log, save_images, base64_str_to_img
|
||||
|
||||
from easydiffusion import model_manager, runtime
|
||||
from easydiffusion.types import (
|
||||
@ -19,6 +17,7 @@ from easydiffusion.types import (
|
||||
TaskData,
|
||||
GenerateImageRequest,
|
||||
)
|
||||
from easydiffusion.utils import filter_nsfw
|
||||
from easydiffusion.utils.save_utils import format_folder_name
|
||||
|
||||
from .task import Task
|
||||
@ -47,7 +46,9 @@ class FilterTask(Task):
|
||||
|
||||
# convert to multi-filter format, if necessary
|
||||
if isinstance(req.filter, str):
|
||||
req.filter_params = {req.filter: req.filter_params}
|
||||
if req.filter not in req.filter_params:
|
||||
req.filter_params = {req.filter: req.filter_params}
|
||||
|
||||
req.filter = [req.filter]
|
||||
|
||||
if not isinstance(req.image, list):
|
||||
@ -57,6 +58,7 @@ class FilterTask(Task):
|
||||
"Runs the image filtering task on the assigned thread"
|
||||
|
||||
from easydiffusion import app
|
||||
from easydiffusion.backend_manager import backend
|
||||
|
||||
context = runtime.context
|
||||
|
||||
@ -66,15 +68,24 @@ class FilterTask(Task):
|
||||
|
||||
print_task_info(self.request, self.models_data, self.output_format, self.save_data)
|
||||
|
||||
if isinstance(self.request.image, list):
|
||||
images = [get_image(img) for img in self.request.image]
|
||||
else:
|
||||
images = get_image(self.request.image)
|
||||
|
||||
images = filter_images(context, images, self.request.filter, self.request.filter_params)
|
||||
has_nsfw_filter = "nsfw_filter" in self.request.filter
|
||||
|
||||
output_format = self.output_format
|
||||
|
||||
backend.set_options(
|
||||
context,
|
||||
output_format=output_format.output_format,
|
||||
output_quality=output_format.output_quality,
|
||||
output_lossless=output_format.output_lossless,
|
||||
)
|
||||
|
||||
images = backend.filter_images(
|
||||
context, self.request.image, self.request.filter, self.request.filter_params, input_type="base64"
|
||||
)
|
||||
|
||||
if has_nsfw_filter:
|
||||
images = filter_nsfw(images)
|
||||
|
||||
if self.save_data.save_to_disk_path is not None:
|
||||
app_config = app.getConfig()
|
||||
folder_format = app_config.get("folder_format", "$id")
|
||||
@ -85,8 +96,9 @@ class FilterTask(Task):
|
||||
save_dir_path = os.path.join(
|
||||
self.save_data.save_to_disk_path, format_folder_name(folder_format, dummy_req, self.task_data)
|
||||
)
|
||||
images_pil = [base64_str_to_img(img) for img in images]
|
||||
save_images(
|
||||
images,
|
||||
images_pil,
|
||||
save_dir_path,
|
||||
file_name=img_id,
|
||||
output_format=output_format.output_format,
|
||||
@ -94,13 +106,6 @@ class FilterTask(Task):
|
||||
output_lossless=output_format.output_lossless,
|
||||
)
|
||||
|
||||
images = [
|
||||
img_to_base64_str(
|
||||
img, output_format.output_format, output_format.output_quality, output_format.output_lossless
|
||||
)
|
||||
for img in images
|
||||
]
|
||||
|
||||
res = FilterImageResponse(self.request, self.models_data, images=images)
|
||||
res = res.json()
|
||||
self.buffer_queue.put(json.dumps(res))
|
||||
@ -110,46 +115,6 @@ class FilterTask(Task):
|
||||
self.response = res
|
||||
|
||||
|
||||
def filter_images(context, images, filters, filter_params={}):
|
||||
filters = filters if isinstance(filters, list) else [filters]
|
||||
|
||||
for filter_name in filters:
|
||||
params = filter_params.get(filter_name, {})
|
||||
|
||||
previous_state = before_filter(context, filter_name, params)
|
||||
|
||||
try:
|
||||
images = apply_filters(context, filter_name, images, **params)
|
||||
finally:
|
||||
after_filter(context, filter_name, params, previous_state)
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def before_filter(context, filter_name, filter_params):
|
||||
if filter_name == "codeformer":
|
||||
from easydiffusion.model_manager import DEFAULT_MODELS, resolve_model_to_use
|
||||
|
||||
default_realesrgan = DEFAULT_MODELS["realesrgan"][0]["file_name"]
|
||||
prev_realesrgan_path = None
|
||||
|
||||
upscale_faces = filter_params.get("upscale_faces", False)
|
||||
if upscale_faces and default_realesrgan not in context.model_paths["realesrgan"]:
|
||||
prev_realesrgan_path = context.model_paths.get("realesrgan")
|
||||
context.model_paths["realesrgan"] = resolve_model_to_use(default_realesrgan, "realesrgan")
|
||||
load_model(context, "realesrgan")
|
||||
|
||||
return prev_realesrgan_path
|
||||
|
||||
|
||||
def after_filter(context, filter_name, filter_params, previous_state):
|
||||
if filter_name == "codeformer":
|
||||
prev_realesrgan_path = previous_state
|
||||
if prev_realesrgan_path:
|
||||
context.model_paths["realesrgan"] = prev_realesrgan_path
|
||||
load_model(context, "realesrgan")
|
||||
|
||||
|
||||
def print_task_info(
|
||||
req: FilterImageRequest, models_data: ModelsData, output_format: OutputFormatData, save_data: SaveToDiskData
|
||||
):
|
||||
|
@ -2,26 +2,23 @@ import json
|
||||
import pprint
|
||||
import queue
|
||||
import time
|
||||
from PIL import Image
|
||||
|
||||
from easydiffusion import model_manager, runtime
|
||||
from easydiffusion.types import GenerateImageRequest, ModelsData, OutputFormatData, SaveToDiskData
|
||||
from easydiffusion.types import Image as ResponseImage
|
||||
from easydiffusion.types import GenerateImageResponse, RenderTaskData, UserInitiatedStop
|
||||
from easydiffusion.utils import get_printable_request, log, save_images_to_disk
|
||||
from sdkit.generate import generate_images
|
||||
from easydiffusion.types import GenerateImageResponse, RenderTaskData
|
||||
from easydiffusion.utils import get_printable_request, log, save_images_to_disk, filter_nsfw
|
||||
from sdkit.utils import (
|
||||
diffusers_latent_samples_to_images,
|
||||
gc,
|
||||
img_to_base64_str,
|
||||
base64_str_to_img,
|
||||
img_to_buffer,
|
||||
latent_samples_to_images,
|
||||
resize_img,
|
||||
get_image,
|
||||
log,
|
||||
)
|
||||
|
||||
from .task import Task
|
||||
from .filter_images import filter_images
|
||||
|
||||
|
||||
class RenderTask(Task):
|
||||
@ -51,15 +48,13 @@ class RenderTask(Task):
|
||||
"Runs the image generation task on the assigned thread"
|
||||
|
||||
from easydiffusion import task_manager, app
|
||||
from easydiffusion.backend_manager import backend
|
||||
|
||||
context = runtime.context
|
||||
config = app.getConfig()
|
||||
|
||||
if config.get("block_nsfw", False): # override if set on the server
|
||||
self.task_data.block_nsfw = True
|
||||
if "nsfw_checker" not in self.task_data.filters:
|
||||
self.task_data.filters.append("nsfw_checker")
|
||||
self.models_data.model_paths["nsfw_checker"] = "nsfw_checker"
|
||||
|
||||
def step_callback():
|
||||
task_manager.keep_task_alive(self)
|
||||
@ -68,7 +63,7 @@ class RenderTask(Task):
|
||||
if isinstance(task_manager.current_state_error, (SystemExit, StopAsyncIteration)) or isinstance(
|
||||
self.error, StopAsyncIteration
|
||||
):
|
||||
context.stop_processing = True
|
||||
backend.stop_rendering(context)
|
||||
if isinstance(task_manager.current_state_error, StopAsyncIteration):
|
||||
self.error = task_manager.current_state_error
|
||||
task_manager.current_state_error = None
|
||||
@ -78,11 +73,7 @@ class RenderTask(Task):
|
||||
model_manager.resolve_model_paths(self.models_data)
|
||||
|
||||
models_to_force_reload = []
|
||||
if (
|
||||
runtime.set_vram_optimizations(context)
|
||||
or self.has_param_changed(context, "clip_skip")
|
||||
or self.trt_needs_reload(context)
|
||||
):
|
||||
if runtime.set_vram_optimizations(context) or self.has_param_changed(context, "clip_skip"):
|
||||
models_to_force_reload.append("stable-diffusion")
|
||||
|
||||
model_manager.reload_models_if_necessary(context, self.models_data, models_to_force_reload)
|
||||
@ -99,10 +90,11 @@ class RenderTask(Task):
|
||||
self.buffer_queue,
|
||||
self.temp_images,
|
||||
step_callback,
|
||||
self,
|
||||
)
|
||||
|
||||
def has_param_changed(self, context, param_name):
|
||||
if not context.test_diffusers:
|
||||
if not getattr(context, "test_diffusers", False):
|
||||
return False
|
||||
if "stable-diffusion" not in context.models or "params" not in context.models["stable-diffusion"]:
|
||||
return True
|
||||
@ -111,29 +103,6 @@ class RenderTask(Task):
|
||||
new_val = self.models_data.model_params.get("stable-diffusion", {}).get(param_name, False)
|
||||
return model["params"].get(param_name) != new_val
|
||||
|
||||
def trt_needs_reload(self, context):
|
||||
if not context.test_diffusers:
|
||||
return False
|
||||
if "stable-diffusion" not in context.models or "params" not in context.models["stable-diffusion"]:
|
||||
return True
|
||||
|
||||
model = context.models["stable-diffusion"]
|
||||
|
||||
# curr_convert_to_trt = model["params"].get("convert_to_tensorrt")
|
||||
new_convert_to_trt = self.models_data.model_params.get("stable-diffusion", {}).get("convert_to_tensorrt", False)
|
||||
|
||||
pipe = model["default"]
|
||||
is_trt_loaded = hasattr(pipe.unet, "_allocate_trt_buffers") or hasattr(
|
||||
pipe.unet, "_allocate_trt_buffers_backup"
|
||||
)
|
||||
if new_convert_to_trt and not is_trt_loaded:
|
||||
return True
|
||||
|
||||
curr_build_config = model["params"].get("trt_build_config")
|
||||
new_build_config = self.models_data.model_params.get("stable-diffusion", {}).get("trt_build_config", {})
|
||||
|
||||
return new_convert_to_trt and curr_build_config != new_build_config
|
||||
|
||||
|
||||
def make_images(
|
||||
context,
|
||||
@ -145,12 +114,21 @@ def make_images(
|
||||
data_queue: queue.Queue,
|
||||
task_temp_images: list,
|
||||
step_callback,
|
||||
task,
|
||||
):
|
||||
context.stop_processing = False
|
||||
print_task_info(req, task_data, models_data, output_format, save_data)
|
||||
|
||||
images, seeds = make_images_internal(
|
||||
context, req, task_data, models_data, output_format, save_data, data_queue, task_temp_images, step_callback
|
||||
context,
|
||||
req,
|
||||
task_data,
|
||||
models_data,
|
||||
output_format,
|
||||
save_data,
|
||||
data_queue,
|
||||
task_temp_images,
|
||||
step_callback,
|
||||
task,
|
||||
)
|
||||
|
||||
res = GenerateImageResponse(
|
||||
@ -170,7 +148,9 @@ def print_task_info(
|
||||
output_format: OutputFormatData,
|
||||
save_data: SaveToDiskData,
|
||||
):
|
||||
req_str = pprint.pformat(get_printable_request(req, task_data, models_data, output_format, save_data)).replace("[", "\[")
|
||||
req_str = pprint.pformat(get_printable_request(req, task_data, models_data, output_format, save_data)).replace(
|
||||
"[", "\["
|
||||
)
|
||||
task_str = pprint.pformat(task_data.dict()).replace("[", "\[")
|
||||
models_data = pprint.pformat(models_data.dict()).replace("[", "\[")
|
||||
output_format = pprint.pformat(output_format.dict()).replace("[", "\[")
|
||||
@ -178,7 +158,7 @@ def print_task_info(
|
||||
|
||||
log.info(f"request: {req_str}")
|
||||
log.info(f"task data: {task_str}")
|
||||
# log.info(f"models data: {models_data}")
|
||||
log.info(f"models data: {models_data}")
|
||||
log.info(f"output format: {output_format}")
|
||||
log.info(f"save data: {save_data}")
|
||||
|
||||
@ -193,26 +173,41 @@ def make_images_internal(
|
||||
data_queue: queue.Queue,
|
||||
task_temp_images: list,
|
||||
step_callback,
|
||||
task,
|
||||
):
|
||||
images, user_stopped = generate_images_internal(
|
||||
from easydiffusion.backend_manager import backend
|
||||
|
||||
# prep the nsfw_filter
|
||||
if task_data.block_nsfw:
|
||||
filter_nsfw([Image.new("RGB", (1, 1))]) # hack - ensures that the model is available
|
||||
|
||||
images = generate_images_internal(
|
||||
context,
|
||||
req,
|
||||
task_data,
|
||||
models_data,
|
||||
output_format,
|
||||
data_queue,
|
||||
task_temp_images,
|
||||
step_callback,
|
||||
task_data.stream_image_progress,
|
||||
task_data.stream_image_progress_interval,
|
||||
)
|
||||
|
||||
gc(context)
|
||||
user_stopped = isinstance(task.error, StopAsyncIteration)
|
||||
|
||||
filters, filter_params = task_data.filters, task_data.filter_params
|
||||
filtered_images = filter_images(context, images, filters, filter_params) if not user_stopped else images
|
||||
if len(filters) > 0 and not user_stopped:
|
||||
filtered_images = backend.filter_images(context, images, filters, filter_params, input_type="base64")
|
||||
else:
|
||||
filtered_images = images
|
||||
|
||||
if task_data.block_nsfw:
|
||||
filtered_images = filter_nsfw(filtered_images)
|
||||
|
||||
if save_data.save_to_disk_path is not None:
|
||||
save_images_to_disk(images, filtered_images, req, task_data, models_data, output_format, save_data)
|
||||
images_pil = [base64_str_to_img(img) for img in images]
|
||||
filtered_images_pil = [base64_str_to_img(img) for img in filtered_images]
|
||||
save_images_to_disk(images_pil, filtered_images_pil, req, task_data, models_data, output_format, save_data)
|
||||
|
||||
seeds = [*range(req.seed, req.seed + len(images))]
|
||||
if task_data.show_only_filtered_image or filtered_images is images:
|
||||
@ -226,97 +221,43 @@ def generate_images_internal(
|
||||
req: GenerateImageRequest,
|
||||
task_data: RenderTaskData,
|
||||
models_data: ModelsData,
|
||||
output_format: OutputFormatData,
|
||||
data_queue: queue.Queue,
|
||||
task_temp_images: list,
|
||||
step_callback,
|
||||
stream_image_progress: bool,
|
||||
stream_image_progress_interval: int,
|
||||
):
|
||||
context.temp_images.clear()
|
||||
from easydiffusion.backend_manager import backend
|
||||
|
||||
callback = make_step_callback(
|
||||
callback = make_step_callback(context, req, task_data, data_queue, task_temp_images, step_callback)
|
||||
|
||||
req.width, req.height = map(lambda x: x - x % 8, (req.width, req.height)) # clamp to 8
|
||||
|
||||
if req.control_image and task_data.control_filter_to_apply:
|
||||
req.controlnet_filter = task_data.control_filter_to_apply
|
||||
|
||||
if req.init_image is not None and int(req.num_inference_steps * req.prompt_strength) == 0:
|
||||
req.prompt_strength = 1 / req.num_inference_steps if req.num_inference_steps > 0 else 1
|
||||
|
||||
backend.set_options(
|
||||
context,
|
||||
req,
|
||||
task_data,
|
||||
data_queue,
|
||||
task_temp_images,
|
||||
step_callback,
|
||||
stream_image_progress,
|
||||
stream_image_progress_interval,
|
||||
output_format=output_format.output_format,
|
||||
output_quality=output_format.output_quality,
|
||||
output_lossless=output_format.output_lossless,
|
||||
vae_tiling=task_data.enable_vae_tiling,
|
||||
stream_image_progress=stream_image_progress,
|
||||
stream_image_progress_interval=stream_image_progress_interval,
|
||||
clip_skip=2 if task_data.clip_skip else 1,
|
||||
)
|
||||
|
||||
try:
|
||||
if req.init_image is not None and not context.test_diffusers:
|
||||
req.sampler_name = "ddim"
|
||||
images = backend.generate_images(context, callback=callback, output_type="base64", **req.dict())
|
||||
|
||||
req.width, req.height = map(lambda x: x - x % 8, (req.width, req.height)) # clamp to 8
|
||||
|
||||
if req.control_image and task_data.control_filter_to_apply:
|
||||
req.control_image = get_image(req.control_image)
|
||||
req.control_image = resize_img(req.control_image.convert("RGB"), req.width, req.height, clamp_to_8=True)
|
||||
req.control_image = filter_images(context, req.control_image, task_data.control_filter_to_apply)[0]
|
||||
|
||||
if req.init_image is not None and int(req.num_inference_steps * req.prompt_strength) == 0:
|
||||
req.prompt_strength = 1 / req.num_inference_steps if req.num_inference_steps > 0 else 1
|
||||
|
||||
if context.test_diffusers:
|
||||
pipe = context.models["stable-diffusion"]["default"]
|
||||
if hasattr(pipe.unet, "_allocate_trt_buffers_backup"):
|
||||
setattr(pipe.unet, "_allocate_trt_buffers", pipe.unet._allocate_trt_buffers_backup)
|
||||
delattr(pipe.unet, "_allocate_trt_buffers_backup")
|
||||
|
||||
if hasattr(pipe.unet, "_allocate_trt_buffers"):
|
||||
convert_to_trt = models_data.model_params["stable-diffusion"].get("convert_to_tensorrt", False)
|
||||
if convert_to_trt:
|
||||
pipe.unet.forward = pipe.unet._trt_forward
|
||||
# pipe.vae.decoder.forward = pipe.vae.decoder._trt_forward
|
||||
log.info(f"Setting unet.forward to TensorRT")
|
||||
else:
|
||||
log.info(f"Not using TensorRT for unet.forward")
|
||||
pipe.unet.forward = pipe.unet._non_trt_forward
|
||||
# pipe.vae.decoder.forward = pipe.vae.decoder._non_trt_forward
|
||||
setattr(pipe.unet, "_allocate_trt_buffers_backup", pipe.unet._allocate_trt_buffers)
|
||||
delattr(pipe.unet, "_allocate_trt_buffers")
|
||||
|
||||
if task_data.enable_vae_tiling:
|
||||
if hasattr(pipe, "enable_vae_tiling"):
|
||||
pipe.enable_vae_tiling()
|
||||
else:
|
||||
if hasattr(pipe, "disable_vae_tiling"):
|
||||
pipe.disable_vae_tiling()
|
||||
|
||||
images = generate_images(context, callback=callback, **req.dict())
|
||||
user_stopped = False
|
||||
except UserInitiatedStop:
|
||||
images = []
|
||||
user_stopped = True
|
||||
if context.partial_x_samples is not None:
|
||||
if context.test_diffusers:
|
||||
images = diffusers_latent_samples_to_images(context, context.partial_x_samples)
|
||||
else:
|
||||
images = latent_samples_to_images(context, context.partial_x_samples)
|
||||
finally:
|
||||
if hasattr(context, "partial_x_samples") and context.partial_x_samples is not None:
|
||||
if not context.test_diffusers:
|
||||
del context.partial_x_samples
|
||||
context.partial_x_samples = None
|
||||
|
||||
return images, user_stopped
|
||||
return images
|
||||
|
||||
|
||||
def construct_response(images: list, seeds: list, output_format: OutputFormatData):
|
||||
return [
|
||||
ResponseImage(
|
||||
data=img_to_base64_str(
|
||||
img,
|
||||
output_format.output_format,
|
||||
output_format.output_quality,
|
||||
output_format.output_lossless,
|
||||
),
|
||||
seed=seed,
|
||||
)
|
||||
for img, seed in zip(images, seeds)
|
||||
]
|
||||
return [ResponseImage(data=img, seed=seed) for img, seed in zip(images, seeds)]
|
||||
|
||||
|
||||
def make_step_callback(
|
||||
@ -326,53 +267,44 @@ def make_step_callback(
|
||||
data_queue: queue.Queue,
|
||||
task_temp_images: list,
|
||||
step_callback,
|
||||
stream_image_progress: bool,
|
||||
stream_image_progress_interval: int,
|
||||
):
|
||||
from easydiffusion.backend_manager import backend
|
||||
|
||||
n_steps = req.num_inference_steps if req.init_image is None else int(req.num_inference_steps * req.prompt_strength)
|
||||
last_callback_time = -1
|
||||
|
||||
def update_temp_img(x_samples, task_temp_images: list):
|
||||
def update_temp_img(images, task_temp_images: list):
|
||||
partial_images = []
|
||||
|
||||
if context.test_diffusers:
|
||||
images = diffusers_latent_samples_to_images(context, x_samples)
|
||||
else:
|
||||
images = latent_samples_to_images(context, x_samples)
|
||||
if images is None:
|
||||
return []
|
||||
|
||||
if task_data.block_nsfw:
|
||||
images = filter_images(context, images, "nsfw_checker")
|
||||
images = filter_nsfw(images, print_log=False)
|
||||
|
||||
for i, img in enumerate(images):
|
||||
img = img.convert("RGB")
|
||||
img = resize_img(img, req.width, req.height)
|
||||
buf = img_to_buffer(img, output_format="JPEG")
|
||||
|
||||
context.temp_images[f"{task_data.request_id}/{i}"] = buf
|
||||
task_temp_images[i] = buf
|
||||
partial_images.append({"path": f"/image/tmp/{task_data.request_id}/{i}"})
|
||||
del images
|
||||
return partial_images
|
||||
|
||||
def on_image_step(x_samples, i, *args):
|
||||
def on_image_step(images, i, *args):
|
||||
nonlocal last_callback_time
|
||||
|
||||
if context.test_diffusers:
|
||||
context.partial_x_samples = (x_samples, args[0])
|
||||
else:
|
||||
context.partial_x_samples = x_samples
|
||||
|
||||
step_time = time.time() - last_callback_time if last_callback_time != -1 else -1
|
||||
last_callback_time = time.time()
|
||||
|
||||
progress = {"step": i, "step_time": step_time, "total_steps": n_steps}
|
||||
|
||||
if stream_image_progress and stream_image_progress_interval > 0 and i % stream_image_progress_interval == 0:
|
||||
progress["output"] = update_temp_img(context.partial_x_samples, task_temp_images)
|
||||
if images is not None:
|
||||
progress["output"] = update_temp_img(images, task_temp_images)
|
||||
|
||||
data_queue.put(json.dumps(progress))
|
||||
|
||||
step_callback()
|
||||
|
||||
if context.stop_processing:
|
||||
raise UserInitiatedStop("User requested that we stop processing")
|
||||
|
||||
return on_image_step
|
||||
|
@ -19,9 +19,10 @@ class GenerateImageRequest(BaseModel):
|
||||
init_image_mask: Any = None
|
||||
control_image: Any = None
|
||||
control_alpha: Union[float, List[float]] = None
|
||||
controlnet_filter: str = None
|
||||
prompt_strength: float = 0.8
|
||||
preserve_init_image_color_profile = False
|
||||
strict_mask_border = False
|
||||
preserve_init_image_color_profile: bool = False
|
||||
strict_mask_border: bool = False
|
||||
|
||||
sampler_name: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"
|
||||
hypernetwork_strength: float = 0
|
||||
@ -100,7 +101,7 @@ class MergeRequest(BaseModel):
|
||||
model1: str = None
|
||||
ratio: float = None
|
||||
out_path: str = "mix"
|
||||
use_fp16 = True
|
||||
use_fp16: bool = True
|
||||
|
||||
|
||||
class Image:
|
||||
@ -213,22 +214,19 @@ def convert_legacy_render_req_to_new(old_req: dict):
|
||||
model_paths["controlnet"] = old_req.get("use_controlnet_model")
|
||||
model_paths["embeddings"] = old_req.get("use_embeddings_model")
|
||||
|
||||
model_paths["gfpgan"] = old_req.get("use_face_correction", "")
|
||||
model_paths["gfpgan"] = model_paths["gfpgan"] if "gfpgan" in model_paths["gfpgan"].lower() else None
|
||||
## ensure that the model name is in the model path
|
||||
for model_name in ("gfpgan", "codeformer"):
|
||||
model_paths[model_name] = old_req.get("use_face_correction", "")
|
||||
model_paths[model_name] = model_paths[model_name] if model_name in model_paths[model_name].lower() else None
|
||||
|
||||
model_paths["codeformer"] = old_req.get("use_face_correction", "")
|
||||
model_paths["codeformer"] = model_paths["codeformer"] if "codeformer" in model_paths["codeformer"].lower() else None
|
||||
for model_name in ("realesrgan", "latent_upscaler", "esrgan_4x", "lanczos", "nearest", "scunet", "swinir"):
|
||||
model_paths[model_name] = old_req.get("use_upscale", "")
|
||||
model_paths[model_name] = model_paths[model_name] if model_name in model_paths[model_name].lower() else None
|
||||
|
||||
model_paths["realesrgan"] = old_req.get("use_upscale", "")
|
||||
model_paths["realesrgan"] = model_paths["realesrgan"] if "realesrgan" in model_paths["realesrgan"].lower() else None
|
||||
|
||||
model_paths["latent_upscaler"] = old_req.get("use_upscale", "")
|
||||
model_paths["latent_upscaler"] = (
|
||||
model_paths["latent_upscaler"] if "latent_upscaler" in model_paths["latent_upscaler"].lower() else None
|
||||
)
|
||||
if "control_filter_to_apply" in old_req:
|
||||
filter_model = old_req["control_filter_to_apply"]
|
||||
model_paths[filter_model] = filter_model
|
||||
old_req["control_filter_to_apply"] = convert_legacy_controlnet_filter_name(old_req["control_filter_to_apply"])
|
||||
|
||||
if old_req.get("block_nsfw"):
|
||||
model_paths["nsfw_checker"] = "nsfw_checker"
|
||||
@ -244,8 +242,12 @@ def convert_legacy_render_req_to_new(old_req: dict):
|
||||
}
|
||||
|
||||
# move the filter params
|
||||
if model_paths["realesrgan"]:
|
||||
filter_params["realesrgan"] = {"scale": int(old_req.get("upscale_amount", 4))}
|
||||
for model_name in ("realesrgan", "esrgan_4x", "lanczos", "nearest", "scunet", "swinir"):
|
||||
if model_paths[model_name]:
|
||||
filter_params[model_name] = {
|
||||
"upscaler": model_paths[model_name],
|
||||
"scale": int(old_req.get("upscale_amount", 4)),
|
||||
}
|
||||
if model_paths["latent_upscaler"]:
|
||||
filter_params["latent_upscaler"] = {
|
||||
"prompt": old_req["prompt"],
|
||||
@ -264,14 +266,31 @@ def convert_legacy_render_req_to_new(old_req: dict):
|
||||
if old_req.get("block_nsfw"):
|
||||
filters.append("nsfw_checker")
|
||||
|
||||
if model_paths["codeformer"]:
|
||||
filters.append("codeformer")
|
||||
elif model_paths["gfpgan"]:
|
||||
filters.append("gfpgan")
|
||||
for model_name in ("gfpgan", "codeformer"):
|
||||
if model_paths[model_name]:
|
||||
filters.append(model_name)
|
||||
break
|
||||
|
||||
if model_paths["realesrgan"]:
|
||||
filters.append("realesrgan")
|
||||
elif model_paths["latent_upscaler"]:
|
||||
filters.append("latent_upscaler")
|
||||
for model_name in ("realesrgan", "latent_upscaler", "esrgan_4x", "lanczos", "nearest", "scunet", "swinir"):
|
||||
if model_paths[model_name]:
|
||||
filters.append(model_name)
|
||||
break
|
||||
|
||||
return new_req
|
||||
|
||||
|
||||
def convert_legacy_controlnet_filter_name(filter):
|
||||
from easydiffusion.backend_manager import backend
|
||||
|
||||
if filter is None:
|
||||
return None
|
||||
|
||||
controlnet_filter_names = backend.list_controlnet_filters()
|
||||
|
||||
def apply(f):
|
||||
return f"controlnet_{f}" if f in controlnet_filter_names else f
|
||||
|
||||
if isinstance(filter, list):
|
||||
return [apply(f) for f in filter]
|
||||
|
||||
return apply(filter)
|
||||
|
@ -7,6 +7,8 @@ from .save_utils import (
|
||||
save_images_to_disk,
|
||||
get_printable_request,
|
||||
)
|
||||
from .nsfw_checker import filter_nsfw
|
||||
|
||||
|
||||
def sha256sum(filename):
|
||||
sha256 = hashlib.sha256()
|
||||
@ -18,4 +20,3 @@ def sha256sum(filename):
|
||||
sha256.update(data)
|
||||
|
||||
return sha256.hexdigest()
|
||||
|
||||
|
80
ui/easydiffusion/utils/nsfw_checker.py
Normal file
80
ui/easydiffusion/utils/nsfw_checker.py
Normal file
@ -0,0 +1,80 @@
|
||||
# possibly move this to sdkit in the future
|
||||
import os
|
||||
|
||||
# mirror of https://huggingface.co/AdamCodd/vit-base-nsfw-detector/blob/main/onnx/model_quantized.onnx
|
||||
NSFW_MODEL_URL = (
|
||||
"https://github.com/easydiffusion/sdkit-test-data/releases/download/assets/vit-base-nsfw-detector-quantized.onnx"
|
||||
)
|
||||
MODEL_HASH_QUICK = "220123559305b1b07b7a0894c3471e34dccd090d71cdf337dd8012f9e40d6c28"
|
||||
|
||||
nsfw_check_model = None
|
||||
|
||||
|
||||
def filter_nsfw(images, blur_radius: float = 75, print_log=True):
|
||||
global nsfw_check_model
|
||||
|
||||
from easydiffusion.app import MODELS_DIR
|
||||
from sdkit.utils import base64_str_to_img, img_to_base64_str, download_file, log, hash_file_quick
|
||||
|
||||
import onnxruntime as ort
|
||||
from PIL import ImageFilter
|
||||
import numpy as np
|
||||
|
||||
if nsfw_check_model is None:
|
||||
model_dir = os.path.join(MODELS_DIR, "nsfw-checker")
|
||||
model_path = os.path.join(model_dir, "vit-base-nsfw-detector-quantized.onnx")
|
||||
|
||||
os.makedirs(model_dir, exist_ok=True)
|
||||
|
||||
if not os.path.exists(model_path) or hash_file_quick(model_path) != MODEL_HASH_QUICK:
|
||||
download_file(NSFW_MODEL_URL, model_path)
|
||||
|
||||
nsfw_check_model = ort.InferenceSession(model_path, providers=["CPUExecutionProvider"])
|
||||
|
||||
# Preprocess the input image
|
||||
def preprocess_image(img):
|
||||
img = img.convert("RGB")
|
||||
|
||||
# config based on based on https://huggingface.co/AdamCodd/vit-base-nsfw-detector/blob/main/onnx/preprocessor_config.json
|
||||
# Resize the image
|
||||
img = img.resize((384, 384))
|
||||
|
||||
# Normalize the image
|
||||
img = np.array(img) / 255.0 # Scale pixel values to [0, 1]
|
||||
mean = np.array([0.5, 0.5, 0.5])
|
||||
std = np.array([0.5, 0.5, 0.5])
|
||||
img = (img - mean) / std
|
||||
|
||||
# Transpose to match input shape (batch_size, channels, height, width)
|
||||
img = np.transpose(img, (2, 0, 1)).astype(np.float32)
|
||||
|
||||
# Add batch dimension
|
||||
img = np.expand_dims(img, axis=0)
|
||||
|
||||
return img
|
||||
|
||||
# Run inference
|
||||
input_name = nsfw_check_model.get_inputs()[0].name
|
||||
output_name = nsfw_check_model.get_outputs()[0].name
|
||||
|
||||
if print_log:
|
||||
log.info("Running NSFW checker (onnx)")
|
||||
|
||||
results = []
|
||||
for img in images:
|
||||
is_base64 = isinstance(img, str)
|
||||
|
||||
input_img = base64_str_to_img(img) if is_base64 else img
|
||||
|
||||
result = nsfw_check_model.run([output_name], {input_name: preprocess_image(input_img)})
|
||||
is_nsfw = [np.argmax(arr) == 1 for arr in result][0]
|
||||
|
||||
if is_nsfw:
|
||||
output_img = input_img.filter(ImageFilter.GaussianBlur(blur_radius))
|
||||
output_img = img_to_base64_str(output_img) if is_base64 else output_img
|
||||
else:
|
||||
output_img = img
|
||||
|
||||
results.append(output_img)
|
||||
|
||||
return results
|
@ -247,7 +247,7 @@ def get_printable_request(
|
||||
task_data_metadata.update(save_data.dict())
|
||||
|
||||
app_config = app.getConfig()
|
||||
using_diffusers = app_config.get("use_v3_engine", True)
|
||||
using_diffusers = app_config.get("backend", "ed_diffusers") in ("ed_diffusers", "webui")
|
||||
|
||||
# Save the metadata in the order defined in TASK_TEXT_MAPPING
|
||||
metadata = {}
|
||||
|
131
ui/index.html
131
ui/index.html
@ -35,7 +35,10 @@
|
||||
<h1>
|
||||
<img id="logo_img" src="/media/images/icon-512x512.png" >
|
||||
Easy Diffusion
|
||||
<small><span id="version">v3.0.9</span> <span id="updateBranchLabel"></span></small>
|
||||
<small>
|
||||
<span id="version">v3.5.0</span> <span id="updateBranchLabel"></span>
|
||||
<div id="engine-logo" class="gated-feature" data-feature-keys="backend_webui">(Powered by <a id="backend-url" href="https://github.com/lllyasviel/stable-diffusion-webui-forge" target="_blank">Stable Diffusion WebUI Forge</a>)</div>
|
||||
</small>
|
||||
</h1>
|
||||
</div>
|
||||
<div id="server-status">
|
||||
@ -73,7 +76,7 @@
|
||||
</div>
|
||||
<div id="prompt-toolbar-right" class="toolbar-right">
|
||||
<button id="image-modifier-dropdown" class="tertiaryButton smallButton">+ Image Modifiers</button>
|
||||
<button id="embeddings-button" class="tertiaryButton smallButton displayNone">+ Embedding</button>
|
||||
<button id="embeddings-button" class="tertiaryButton smallButton gated-feature" data-feature-keys="backend_ed_diffusers backend_webui">+ Embedding</button>
|
||||
</div>
|
||||
</div>
|
||||
<textarea id="prompt" class="col-free">a photograph of an astronaut riding a horse</textarea>
|
||||
@ -83,7 +86,7 @@
|
||||
<a href="https://github.com/easydiffusion/easydiffusion/wiki/Writing-prompts#negative-prompts" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top">Click to learn more about Negative Prompts</span></i></a>
|
||||
<small>(optional)</small>
|
||||
</label>
|
||||
<button id="negative-embeddings-button" class="tertiaryButton smallButton displayNone">+ Negative Embedding</button>
|
||||
<button id="negative-embeddings-button" class="tertiaryButton smallButton gated-feature" data-feature-keys="backend_ed_diffusers backend_webui">+ Negative Embedding</button>
|
||||
<div class="collapsible-content">
|
||||
<textarea id="negative_prompt" name="negative_prompt" placeholder="list the things to remove from the image (e.g. fog, green)"></textarea>
|
||||
</div>
|
||||
@ -174,14 +177,14 @@
|
||||
<!-- <label><small>Takes upto 20 mins the first time</small></label> -->
|
||||
</td>
|
||||
</tr>
|
||||
<tr class="pl-5 displayNone" id="clip_skip_config">
|
||||
<tr class="pl-5 gated-feature" id="clip_skip_config" data-feature-keys="backend_ed_diffusers backend_webui">
|
||||
<td><label for="clip_skip">Clip Skip:</label></td>
|
||||
<td class="diffusers-restart-needed">
|
||||
<input id="clip_skip" name="clip_skip" type="checkbox">
|
||||
<a href="https://github.com/easydiffusion/easydiffusion/wiki/Clip-Skip" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about Clip Skip</span></i></a>
|
||||
</td>
|
||||
</tr>
|
||||
<tr id="controlnet_model_container" class="pl-5">
|
||||
<tr id="controlnet_model_container" class="pl-5 gated-feature" data-feature-keys="backend_ed_diffusers backend_webui">
|
||||
<td><label for="controlnet_model">ControlNet Image:</label></td>
|
||||
<td class="diffusers-restart-needed">
|
||||
<div id="control_image_wrapper" class="preview_image_wrapper">
|
||||
@ -201,40 +204,92 @@
|
||||
<option value="openpose_faceonly">OpenPose face-only</option>
|
||||
<option value="openpose_hand">OpenPose hand</option>
|
||||
<option value="openpose_full">OpenPose full</option>
|
||||
<option value="animal_openpose" class="gated-feature" data-feature-keys="backend_webui">animal_openpose</option>
|
||||
<option value="densepose_parula (black bg & blue torso)" class="gated-feature" data-feature-keys="backend_webui">densepose_parula (black bg & blue torso)</option>
|
||||
<option value="densepose (pruple bg & purple torso)" class="gated-feature" data-feature-keys="backend_webui">densepose (pruple bg & purple torso)</option>
|
||||
<option value="dw_openpose_full" class="gated-feature" data-feature-keys="backend_webui">dw_openpose_full</option>
|
||||
<option value="mediapipe_face" class="gated-feature" data-feature-keys="backend_webui">mediapipe_face</option>
|
||||
<option value="instant_id_face_keypoints" class="gated-feature" data-feature-keys="backend_webui">instant_id_face_keypoints</option>
|
||||
<option value="InsightFace+CLIP-H (IPAdapter)" class="gated-feature" data-feature-keys="backend_webui">InsightFace+CLIP-H (IPAdapter)</option>
|
||||
<option value="InsightFace (InstantID)" class="gated-feature" data-feature-keys="backend_webui">InsightFace (InstantID)</option>
|
||||
</optgroup>
|
||||
<optgroup label="Outline">
|
||||
<option value="canny">Canny (*)</option>
|
||||
<option value="mlsd">Straight lines</option>
|
||||
<option value="scribble_hed">Scribble hed (*)</option>
|
||||
<option value="scribble_hedsafe">Scribble hedsafe</option>
|
||||
<option value="scribble_hedsafe" class="gated-feature" data-feature-keys="backend_diffusers">Scribble hedsafe</option>
|
||||
<option value="scribble_pidinet">Scribble pidinet</option>
|
||||
<option value="scribble_pidsafe">Scribble pidsafe</option>
|
||||
<option value="scribble_pidsafe" class="gated-feature" data-feature-keys="backend_diffusers">Scribble pidsafe</option>
|
||||
<option value="scribble_xdog" class="gated-feature" data-feature-keys="backend_webui">scribble_xdog</option>
|
||||
<option value="softedge_hed">Softedge hed</option>
|
||||
<option value="softedge_hedsafe">Softedge hedsafe</option>
|
||||
<option value="softedge_pidinet">Softedge pidinet</option>
|
||||
<option value="softedge_pidsafe">Softedge pidsafe</option>
|
||||
<option value="softedge_teed" class="gated-feature" data-feature-keys="backend_webui">softedge_teed</option>
|
||||
</optgroup>
|
||||
<optgroup label="Depth">
|
||||
<option value="normal_bae">Normal bae (*)</option>
|
||||
<option value="depth_midas">Depth midas</option>
|
||||
<option value="normal_midas" class="gated-feature" data-feature-keys="backend_webui">normal_midas</option>
|
||||
<option value="depth_zoe">Depth zoe</option>
|
||||
<option value="depth_leres">Depth leres</option>
|
||||
<option value="depth_leres++">Depth leres++</option>
|
||||
<option value="depth_anything_v2" class="gated-feature" data-feature-keys="backend_webui">depth_anything_v2</option>
|
||||
<option value="depth_anything" class="gated-feature" data-feature-keys="backend_webui">depth_anything</option>
|
||||
<option value="depth_hand_refiner" class="gated-feature" data-feature-keys="backend_webui">depth_hand_refiner</option>
|
||||
<option value="depth_marigold" class="gated-feature" data-feature-keys="backend_webui">depth_marigold</option>
|
||||
</optgroup>
|
||||
<optgroup label="Line art">
|
||||
<option value="lineart_coarse">Lineart coarse</option>
|
||||
<option value="lineart_realistic">Lineart realistic</option>
|
||||
<option value="lineart_anime">Lineart anime</option>
|
||||
<option value="lineart_standard (from white bg & black line)" class="gated-feature" data-feature-keys="backend_webui">lineart_standard (from white bg & black line)</option>
|
||||
<option value="lineart_anime_denoise" class="gated-feature" data-feature-keys="backend_webui">lineart_anime_denoise</option>
|
||||
</optgroup>
|
||||
<optgroup label="Reference" class="gated-feature" data-feature-keys="backend_webui">
|
||||
<option value="reference_adain">reference_adain</option>
|
||||
<option value="reference_only">reference_only</option>
|
||||
<option value="reference_adain+attn">reference_adain+attn</option>
|
||||
</optgroup>
|
||||
<optgroup label="Tile" class="gated-feature" data-feature-keys="backend_webui">
|
||||
<option value="tile_colorfix">tile_colorfix</option>
|
||||
<option value="tile_resample">tile_resample</option>
|
||||
<option value="tile_colorfix+sharp">tile_colorfix+sharp</option>
|
||||
</optgroup>
|
||||
<optgroup label="CLIP (IPAdapter)" class="gated-feature" data-feature-keys="backend_webui">
|
||||
<option value="CLIP-ViT-H (IPAdapter)">CLIP-ViT-H (IPAdapter)</option>
|
||||
<option value="CLIP-G (Revision)">CLIP-G (Revision)</option>
|
||||
<option value="CLIP-G (Revision ignore prompt)">CLIP-G (Revision ignore prompt)</option>
|
||||
<option value="CLIP-ViT-bigG (IPAdapter)">CLIP-ViT-bigG (IPAdapter)</option>
|
||||
<option value="InsightFace+CLIP-H (IPAdapter)">InsightFace+CLIP-H (IPAdapter)</option>
|
||||
</optgroup>
|
||||
<optgroup label="Inpaint" class="gated-feature" data-feature-keys="backend_webui">
|
||||
<option value="inpaint_only">inpaint_only</option>
|
||||
<option value="inpaint_only+lama">inpaint_only+lama</option>
|
||||
<option value="inpaint_global_harmonious">inpaint_global_harmonious</option>
|
||||
</optgroup>
|
||||
<optgroup label="Segment" class="gated-feature" data-feature-keys="backend_webui">
|
||||
<option value="seg_ufade20k">seg_ufade20k</option>
|
||||
<option value="seg_ofade20k">seg_ofade20k</option>
|
||||
<option value="seg_anime_face">seg_anime_face</option>
|
||||
<option value="seg_ofcoco">seg_ofcoco</option>
|
||||
</optgroup>
|
||||
<optgroup label="Misc">
|
||||
<option value="shuffle">Shuffle</option>
|
||||
<option value="segment">Segment</option>
|
||||
<option value="segment" class="gated-feature" data-feature-keys="backend_diffusers">Segment</option>
|
||||
<option value="invert (from white bg & black line)" class="gated-feature" data-feature-keys="backend_webui">invert (from white bg & black line)</option>
|
||||
<option value="threshold" class="gated-feature" data-feature-keys="backend_webui">threshold</option>
|
||||
<option value="t2ia_sketch_pidi" class="gated-feature" data-feature-keys="backend_webui">t2ia_sketch_pidi</option>
|
||||
<option value="t2ia_color_grid" class="gated-feature" data-feature-keys="backend_webui">t2ia_color_grid</option>
|
||||
<option value="recolor_intensity" class="gated-feature" data-feature-keys="backend_webui">recolor_intensity</option>
|
||||
<option value="recolor_luminance" class="gated-feature" data-feature-keys="backend_webui">recolor_luminance</option>
|
||||
<option value="blur_gaussian" class="gated-feature" data-feature-keys="backend_webui">blur_gaussian</option>
|
||||
</optgroup>
|
||||
</select>
|
||||
<br/>
|
||||
<label for="controlnet_model"><small>Model:</small></label> <input id="controlnet_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" />
|
||||
<br/>
|
||||
<label><small>Will download the necessary models, the first time.</small></label>
|
||||
<!-- <br/>
|
||||
<label><small>Will download the necessary models, the first time.</small></label> -->
|
||||
<br/>
|
||||
<label for="controlnet_alpha_slider"><small>Strength:</small></label> <input id="controlnet_alpha_slider" name="controlnet_alpha_slider" class="editor-slider" value="10" type="range" min="0" max="10"> <input id="controlnet_alpha" name="controlnet_alpha" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)" inputmode="decimal">
|
||||
</div>
|
||||
@ -248,27 +303,38 @@
|
||||
<select id="sampler_name" name="sampler_name">
|
||||
<option value="plms">PLMS</option>
|
||||
<option value="ddim">DDIM</option>
|
||||
<option value="ddim_cfgpp" class="gated-feature" data-feature-keys="backend_webui">DDIM CFG++</option>
|
||||
<option value="heun">Heun</option>
|
||||
<option value="euler">Euler</option>
|
||||
<option value="euler_a" selected>Euler Ancestral</option>
|
||||
<option value="dpm2">DPM2</option>
|
||||
<option value="dpm2_a">DPM2 Ancestral</option>
|
||||
<option value="dpm_fast" class="gated-feature" data-feature-keys="backend_webui">DPM Fast</option>
|
||||
<option value="dpm_adaptive" class="gated-feature" data-feature-keys="backend_ed_classic backend_webui">DPM Adaptive</option>
|
||||
<option value="lms">LMS</option>
|
||||
<option value="dpm_solver_stability">DPM Solver (Stability AI)</option>
|
||||
<option value="dpm_solver_stability" class="gated-feature" data-feature-keys="backend_ed_classic backend_ed_diffusers">DPM Solver (Stability AI)</option>
|
||||
<option value="dpmpp_2s_a">DPM++ 2s Ancestral (Karras)</option>
|
||||
<option value="dpmpp_2m">DPM++ 2m (Karras)</option>
|
||||
<option value="dpmpp_2m_sde" class="diffusers-only">DPM++ 2m SDE (Karras)</option>
|
||||
<option value="dpmpp_2m_sde" class="gated-feature" data-feature-keys="backend_ed_diffusers backend_webui">DPM++ 2m SDE</option>
|
||||
<option value="dpmpp_2m_sde_heun" class="gated-feature" data-feature-keys="backend_webui">DPM++ 2m SDE Heun</option>
|
||||
<option value="dpmpp_3m_sde" class="gated-feature" data-feature-keys="backend_webui">DPM++ 3M SDE</option>
|
||||
<option value="dpmpp_sde">DPM++ SDE (Karras)</option>
|
||||
<option value="dpm_adaptive" class="k_diffusion-only">DPM Adaptive (Karras)</option>
|
||||
<option value="ddpm" class="diffusers-only">DDPM</option>
|
||||
<option value="deis" class="diffusers-only">DEIS</option>
|
||||
<option value="unipc_snr" class="k_diffusion-only">UniPC SNR</option>
|
||||
<option value="unipc_tu">UniPC TU</option>
|
||||
<option value="unipc_snr_2" class="k_diffusion-only">UniPC SNR 2</option>
|
||||
<option value="unipc_tu_2" class="k_diffusion-only">UniPC TU 2</option>
|
||||
<option value="unipc_tq" class="k_diffusion-only">UniPC TQ</option>
|
||||
<option value="restart" class="gated-feature" data-feature-keys="backend_webui">Restart</option>
|
||||
<option value="heun_pp2" class="gated-feature" data-feature-keys="backend_webui">Heun PP2</option>
|
||||
<option value="ipndm" class="gated-feature" data-feature-keys="backend_webui">IPNDM</option>
|
||||
<option value="ipndm_v" class="gated-feature" data-feature-keys="backend_webui">IPNDM_V</option>
|
||||
<option value="ddpm" class="gated-feature" data-feature-keys="backend_ed_diffusers backend_webui">DDPM</option>
|
||||
<option value="deis" class="gated-feature" data-feature-keys="backend_ed_diffusers backend_webui">DEIS</option>
|
||||
<option value="lcm" class="gated-feature" data-feature-keys="backend_webui">LCM</option>
|
||||
<option value="forge_flux_realistic" class="gated-feature" data-feature-keys="backend_webui">[Forge] Flux Realistic</option>
|
||||
<option value="forge_flux_realistic_slow" class="gated-feature" data-feature-keys="backend_webui">[Forge] Flux Realistic (Slow)</option>
|
||||
<option value="unipc_snr" class="gated-feature" data-feature-keys="backend_ed_classic">UniPC SNR</option>
|
||||
<option value="unipc_tu" class="gated-feature" data-feature-keys="backend_ed_classic backend_ed_diffusers">UniPC TU</option>
|
||||
<option value="unipc_snr_2" class="gated-feature" data-feature-keys="backend_ed_classic">UniPC SNR 2</option>
|
||||
<option value="unipc_tu_2" class="gated-feature" data-feature-keys="backend_ed_classic">UniPC TU 2</option>
|
||||
<option value="unipc_tq" class="gated-feature" data-feature-keys="backend_ed_classic">UniPC TQ</option>
|
||||
</select>
|
||||
<a href="https://github.com/easydiffusion/easydiffusion/wiki/Samplers" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about samplers</span></i></a>
|
||||
<a href="https://github.com/easydiffusion/easydiffusion/wiki/How-to-Use#samplers" target="_blank"><i class="fa-solid fa-circle-question help-btn"><span class="simple-tooltip top-left">Click to learn more about samplers</span></i></a>
|
||||
</td></tr>
|
||||
<tr class="pl-5"><td><label>Image Size: </label></td><td id="image-size-options">
|
||||
<select id="width" name="width" value="512">
|
||||
@ -349,7 +415,7 @@
|
||||
<tr class="pl-5"><td><label for="num_inference_steps">Inference Steps:</label></td><td> <input id="num_inference_steps" name="num_inference_steps" type="number" min="1" step="1" style="width: 42pt" value="25" onkeypress="preventNonNumericalInput(event)" inputmode="numeric"></td></tr>
|
||||
<tr class="pl-5"><td><label for="guidance_scale_slider">Guidance Scale:</label></td><td> <input id="guidance_scale_slider" name="guidance_scale_slider" class="editor-slider" value="75" type="range" min="11" max="500"> <input id="guidance_scale" name="guidance_scale" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)" inputmode="decimal"></td></tr>
|
||||
<tr id="prompt_strength_container" class="pl-5"><td><label for="prompt_strength_slider">Prompt Strength:</label></td><td> <input id="prompt_strength_slider" name="prompt_strength_slider" class="editor-slider" value="80" type="range" min="0" max="99"> <input id="prompt_strength" name="prompt_strength" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)" inputmode="decimal"><br/></td></tr>
|
||||
<tr id="lora_model_container" class="pl-5">
|
||||
<tr id="lora_model_container" class="pl-5 gated-feature" data-feature-keys="backend_ed_diffusers backend_webui">
|
||||
<td>
|
||||
<label for="lora_model">LoRA:</label>
|
||||
</td>
|
||||
@ -357,14 +423,14 @@
|
||||
<div id="lora_model" data-path=""></div>
|
||||
</td>
|
||||
</tr>
|
||||
<tr id="hypernetwork_model_container" class="pl-5"><td><label for="hypernetwork_model">Hypernetwork:</label></td><td>
|
||||
<tr id="hypernetwork_model_container" class="pl-5 gated-feature" data-feature-keys="backend_ed_classic"><td><label for="hypernetwork_model">Hypernetwork:</label></td><td>
|
||||
<input id="hypernetwork_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" />
|
||||
</td></tr>
|
||||
<tr id="hypernetwork_strength_container" class="pl-5">
|
||||
<tr id="hypernetwork_strength_container" class="pl-5 gated-feature" data-feature-keys="backend_ed_classic">
|
||||
<td><label for="hypernetwork_strength_slider">Hypernetwork Strength:</label></td>
|
||||
<td> <input id="hypernetwork_strength_slider" name="hypernetwork_strength_slider" class="editor-slider" value="100" type="range" min="0" max="100"> <input id="hypernetwork_strength" name="hypernetwork_strength" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)" inputmode="decimal"><br/></td>
|
||||
</tr>
|
||||
<tr id="tiling_container" class="pl-5">
|
||||
<tr id="tiling_container" class="pl-5 gated-feature" data-feature-keys="backend_ed_diffusers">
|
||||
<td><label for="tiling">Seamless Tiling:</label></td>
|
||||
<td class="diffusers-restart-needed">
|
||||
<select id="tiling" name="tiling">
|
||||
@ -389,7 +455,7 @@
|
||||
<tr class="pl-5" id="output_quality_row"><td><label for="output_quality">Image Quality:</label></td><td>
|
||||
<input id="output_quality_slider" name="output_quality" class="editor-slider" value="75" type="range" min="10" max="95"> <input id="output_quality" name="output_quality" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)" inputmode="numeric">
|
||||
</td></tr>
|
||||
<tr class="pl-5">
|
||||
<tr class="pl-5 gated-feature" data-feature-keys="backend_ed_diffusers">
|
||||
<td><label for="tiling">Enable VAE Tiling:</label></td>
|
||||
<td class="diffusers-restart-needed">
|
||||
<input id="enable_vae_tiling" name="enable_vae_tiling" type="checkbox" checked>
|
||||
@ -405,7 +471,7 @@
|
||||
<input id="use_face_correction" name="use_face_correction" type="checkbox"> <label for="use_face_correction">Fix incorrect faces and eyes</label> <div style="display:inline-block;"><input id="gfpgan_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" /></div>
|
||||
<table id="codeformer_settings" class="displayNone sub-settings">
|
||||
<tr class="pl-5"><td><label for="codeformer_fidelity_slider">Strength:</label></td><td><input id="codeformer_fidelity_slider" name="codeformer_fidelity_slider" class="editor-slider" value="5" type="range" min="0" max="10"> <input id="codeformer_fidelity" name="codeformer_fidelity" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)" inputmode="decimal"></td></tr>
|
||||
<tr class="pl-5"><td><label for="codeformer_upscale_faces">Upscale Faces:</label></td><td><input id="codeformer_upscale_faces" name="codeformer_upscale_faces" type="checkbox" checked> <label><small>(improves the resolution of faces)</small></label></td></tr>
|
||||
<tr class="pl-5 gated-feature" data-feature-keys="backend_ed_diffusers"><td><label for="codeformer_upscale_faces">Upscale Faces:</label></td><td><input id="codeformer_upscale_faces" name="codeformer_upscale_faces" type="checkbox" checked> <label><small>(improves the resolution of faces)</small></label></td></tr>
|
||||
</table>
|
||||
</li>
|
||||
<li class="pl-5">
|
||||
@ -418,7 +484,13 @@
|
||||
<select id="upscale_model" name="upscale_model">
|
||||
<option value="RealESRGAN_x4plus" selected>RealESRGAN_x4plus</option>
|
||||
<option value="RealESRGAN_x4plus_anime_6B">RealESRGAN_x4plus_anime_6B</option>
|
||||
<option value="latent_upscaler">Latent Upscaler 2x</option>
|
||||
<option value="ESRGAN_4x" class="pl-5 gated-feature" data-feature-keys="backend_webui">ESRGAN_4x</option>
|
||||
<option value="Lanczos" class="pl-5 gated-feature" data-feature-keys="backend_webui">Lanczos</option>
|
||||
<option value="Nearest" class="pl-5 gated-feature" data-feature-keys="backend_webui">Nearest</option>
|
||||
<option value="ScuNET" class="pl-5 gated-feature" data-feature-keys="backend_webui">ScuNET GAN</option>
|
||||
<option value="ScuNET PSNR" class="pl-5 gated-feature" data-feature-keys="backend_webui">ScuNET PSNR</option>
|
||||
<option value="SwinIR_4x" class="pl-5 gated-feature" data-feature-keys="backend_webui">SwinIR 4x</option>
|
||||
<option value="latent_upscaler" class="pl-5 gated-feature" data-feature-keys="backend_ed_classic backend_ed_diffusers">Latent Upscaler 2x</option>
|
||||
</select>
|
||||
<table id="latent_upscaler_settings" class="displayNone sub-settings">
|
||||
<tr class="pl-5"><td><label for="latent_upscaler_steps_slider">Upscaling Steps:</label></td><td><input id="latent_upscaler_steps_slider" name="latent_upscaler_steps_slider" class="editor-slider" value="10" type="range" min="1" max="50"> <input id="latent_upscaler_steps" name="latent_upscaler_steps" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)" inputmode="numeric"></td></tr>
|
||||
@ -825,7 +897,8 @@
|
||||
<p>This license of this software forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, <br/>spread misinformation and target vulnerable groups. For the full list of restrictions please read <a href="https://github.com/easydiffusion/easydiffusion/blob/main/LICENSE" target="_blank">the license</a>.</p>
|
||||
<p>By using this software, you consent to the terms and conditions of the license.</p>
|
||||
</div>
|
||||
<input id="test_diffusers" type="checkbox" style="display: none" checked />
|
||||
<input id="test_diffusers" type="checkbox" style="display: none" checked /> <!-- for backwards compatibility -->
|
||||
<input id="use_v3_engine" type="checkbox" style="display: none" checked /> <!-- for backwards compatibility -->
|
||||
</div>
|
||||
</div>
|
||||
</body>
|
||||
|
@ -9,6 +9,3 @@ server.init()
|
||||
model_manager.init()
|
||||
app.init_render_threads()
|
||||
bucket_manager.init()
|
||||
|
||||
# start the browser ui
|
||||
app.open_browser()
|
||||
|
@ -79,6 +79,7 @@
|
||||
}
|
||||
|
||||
.parameters-table .fa-fire,
|
||||
.parameters-table .fa-bolt {
|
||||
.parameters-table .fa-bolt,
|
||||
.parameters-table .fa-robot {
|
||||
color: #F7630C;
|
||||
}
|
||||
|
@ -36,6 +36,15 @@ code {
|
||||
transform: translateY(4px);
|
||||
cursor: pointer;
|
||||
}
|
||||
#engine-logo {
|
||||
font-size: 8pt;
|
||||
padding-left: 10pt;
|
||||
color: var(--small-label-color);
|
||||
}
|
||||
#engine-logo a {
|
||||
text-decoration: none;
|
||||
/* color: var(--small-label-color); */
|
||||
}
|
||||
#prompt {
|
||||
width: 100%;
|
||||
height: 65pt;
|
||||
@ -541,7 +550,7 @@ div.img-preview img {
|
||||
position: relative;
|
||||
background: var(--background-color4);
|
||||
display: flex;
|
||||
padding: 12px 0 0;
|
||||
padding: 6px 0 0;
|
||||
}
|
||||
.tab .icon {
|
||||
padding-right: 4pt;
|
||||
@ -657,6 +666,10 @@ div.img-preview img {
|
||||
display: block;
|
||||
}
|
||||
|
||||
.gated-feature {
|
||||
display: none;
|
||||
}
|
||||
|
||||
.display-settings {
|
||||
float: right;
|
||||
position: relative;
|
||||
|
@ -981,7 +981,20 @@ function onRedoFilter(req, img, e, tools) {
|
||||
function onUpscaleClick(req, img, e, tools) {
|
||||
let path = upscaleModelField.value
|
||||
let scale = parseInt(upscaleAmountField.value)
|
||||
let filterName = path.toLowerCase().includes("realesrgan") ? "realesrgan" : "latent_upscaler"
|
||||
|
||||
let filterName = null
|
||||
const FILTERS = ["realesrgan", "latent_upscaler", "esrgan_4x", "lanczos", "nearest", "scunet", "swinir"]
|
||||
for (let idx in FILTERS) {
|
||||
let f = FILTERS[idx]
|
||||
if (path.toLowerCase().includes(f)) {
|
||||
filterName = f
|
||||
break
|
||||
}
|
||||
}
|
||||
|
||||
if (!filterName) {
|
||||
return
|
||||
}
|
||||
let statusText = "Upscaling by " + scale + "x using " + filterName
|
||||
applyInlineFilter(filterName, path, { scale: scale }, img, statusText, tools)
|
||||
}
|
||||
|
@ -249,14 +249,19 @@ var PARAMETERS = [
|
||||
default: false,
|
||||
},
|
||||
{
|
||||
id: "use_v3_engine",
|
||||
type: ParameterType.checkbox,
|
||||
label: "Use the new v3 engine (diffusers)",
|
||||
id: "backend",
|
||||
type: ParameterType.select,
|
||||
label: "Engine to use",
|
||||
note:
|
||||
"Use our new v3 engine, with additional features like LoRA, ControlNet, SDXL, Embeddings, Tiling and lots more! Please press Save, then restart the program after changing this.",
|
||||
icon: "fa-bolt",
|
||||
default: true,
|
||||
"Use our new v3.5 engine (Forge), with additional features like Flux, SD3, Lycoris and lots more! Please press Save, then restart the program after changing this.",
|
||||
icon: "fa-robot",
|
||||
saveInAppConfig: true,
|
||||
default: "ed_diffusers",
|
||||
options: [
|
||||
{ value: "webui", label: "v3.5 (latest)" },
|
||||
{ value: "ed_diffusers", label: "v3.0" },
|
||||
{ value: "ed_classic", label: "v2.0" },
|
||||
],
|
||||
},
|
||||
{
|
||||
id: "cloudflare",
|
||||
@ -432,6 +437,7 @@ let useBetaChannelField = document.querySelector("#use_beta_channel")
|
||||
let uiOpenBrowserOnStartField = document.querySelector("#ui_open_browser_on_start")
|
||||
let confirmDangerousActionsField = document.querySelector("#confirm_dangerous_actions")
|
||||
let testDiffusers = document.querySelector("#use_v3_engine")
|
||||
let backendEngine = document.querySelector("#backend")
|
||||
let profileNameField = document.querySelector("#profileName")
|
||||
let modelsDirField = document.querySelector("#models_dir")
|
||||
|
||||
@ -454,6 +460,23 @@ async function changeAppConfig(configDelta) {
|
||||
}
|
||||
}
|
||||
|
||||
function getDefaultDisplay(element) {
|
||||
const tag = element.tagName.toLowerCase();
|
||||
const defaultDisplays = {
|
||||
div: 'block',
|
||||
span: 'inline',
|
||||
p: 'block',
|
||||
tr: 'table-row',
|
||||
table: 'table',
|
||||
li: 'list-item',
|
||||
ul: 'block',
|
||||
ol: 'block',
|
||||
button: 'inline',
|
||||
// Add more if needed
|
||||
};
|
||||
return defaultDisplays[tag] || 'block'; // Default to 'block' if not listed
|
||||
}
|
||||
|
||||
async function getAppConfig() {
|
||||
try {
|
||||
let res = await fetch("/get/app_config")
|
||||
@ -478,14 +501,16 @@ async function getAppConfig() {
|
||||
modelsDirField.value = config.models_dir
|
||||
|
||||
let testDiffusersEnabled = true
|
||||
if (config.use_v3_engine === false) {
|
||||
if (config.backend === "ed_classic") {
|
||||
testDiffusersEnabled = false
|
||||
}
|
||||
testDiffusers.checked = testDiffusersEnabled
|
||||
backendEngine.value = config.backend
|
||||
document.querySelector("#test_diffusers").checked = testDiffusers.checked // don't break plugins
|
||||
document.querySelector("#use_v3_engine").checked = testDiffusers.checked // don't break plugins
|
||||
|
||||
if (config.config_on_startup) {
|
||||
if (config.config_on_startup?.use_v3_engine) {
|
||||
if (config.config_on_startup?.backend !== "ed_classic") {
|
||||
document.body.classList.add("diffusers-enabled-on-startup")
|
||||
document.body.classList.remove("diffusers-disabled-on-startup")
|
||||
} else {
|
||||
@ -494,37 +519,27 @@ async function getAppConfig() {
|
||||
}
|
||||
}
|
||||
|
||||
if (!testDiffusersEnabled) {
|
||||
document.querySelector("#lora_model_container").style.display = "none"
|
||||
document.querySelector("#tiling_container").style.display = "none"
|
||||
document.querySelector("#controlnet_model_container").style.display = "none"
|
||||
document.querySelector("#hypernetwork_model_container").style.display = ""
|
||||
document.querySelector("#hypernetwork_strength_container").style.display = ""
|
||||
document.querySelector("#negative-embeddings-button").style.display = "none"
|
||||
|
||||
document.querySelectorAll("#sampler_name option.diffusers-only").forEach((option) => {
|
||||
option.style.display = "none"
|
||||
})
|
||||
if (config.backend === "ed_classic") {
|
||||
IMAGE_STEP_SIZE = 64
|
||||
customWidthField.step = IMAGE_STEP_SIZE
|
||||
customHeightField.step = IMAGE_STEP_SIZE
|
||||
} else {
|
||||
document.querySelector("#lora_model_container").style.display = ""
|
||||
document.querySelector("#tiling_container").style.display = ""
|
||||
document.querySelector("#controlnet_model_container").style.display = ""
|
||||
document.querySelector("#hypernetwork_model_container").style.display = "none"
|
||||
document.querySelector("#hypernetwork_strength_container").style.display = "none"
|
||||
|
||||
document.querySelectorAll("#sampler_name option.k_diffusion-only").forEach((option) => {
|
||||
option.style.display = "none"
|
||||
})
|
||||
document.querySelector("#clip_skip_config").classList.remove("displayNone")
|
||||
document.querySelector("#embeddings-button").classList.remove("displayNone")
|
||||
IMAGE_STEP_SIZE = 8
|
||||
customWidthField.step = IMAGE_STEP_SIZE
|
||||
customHeightField.step = IMAGE_STEP_SIZE
|
||||
}
|
||||
|
||||
customWidthField.step = IMAGE_STEP_SIZE
|
||||
customHeightField.step = IMAGE_STEP_SIZE
|
||||
|
||||
const currentBackendKey = "backend_" + config.backend
|
||||
|
||||
document.querySelectorAll('.gated-feature').forEach((element) => {
|
||||
const featureKeys = element.getAttribute('data-feature-keys').split(' ')
|
||||
|
||||
if (featureKeys.includes(currentBackendKey)) {
|
||||
element.style.display = getDefaultDisplay(element)
|
||||
} else {
|
||||
element.style.display = 'none'
|
||||
}
|
||||
});
|
||||
|
||||
if (config.force_save_metadata) {
|
||||
metadataOutputFormatField.value = config.force_save_metadata
|
||||
}
|
||||
@ -749,6 +764,11 @@ async function getSystemInfo() {
|
||||
metadataOutputFormatField.disabled = !saveToDiskField.checked
|
||||
}
|
||||
setDiskPath(res["default_output_dir"], force)
|
||||
|
||||
// backend info
|
||||
if (res["backend_url"]) {
|
||||
document.querySelector("#backend-url").setAttribute("href", res["backend_url"])
|
||||
}
|
||||
} catch (e) {
|
||||
console.log("error fetching devices", e)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user