mirror of
https://github.com/easydiffusion/easydiffusion.git
synced 2025-01-13 09:48:26 +01:00
Merge branch 'beta' into sync-fn
This commit is contained in:
commit
9ea51b174a
@ -18,6 +18,7 @@
|
||||
Our focus continues to remain on an easy installation experience, and an easy user-interface. While still remaining pretty powerful, in terms of features and speed.
|
||||
|
||||
### Detailed changelog
|
||||
* 2.5.5 - 9 Jan 2022 - Lots of bug fixes. Thanks @patriceac and @JeLuf.
|
||||
* 2.5.4 - 29 Dec 2022 - Press Esc key on the keyboard to close the Image Editor. Thanks @patriceac.
|
||||
* 2.5.4 - 29 Dec 2022 - Lots of bug fixes in the UI. Thanks @patriceac.
|
||||
* 2.5.4 - 28 Dec 2022 - Full support for running tasks in parallel on multiple GPUs. Warning: 'Euler Ancestral', 'DPM2 Ancestral' and 'DPM++ 2s Ancestral' may produce slight variations in the image (if run in parallel), so we recommend using the other samplers.
|
||||
@ -59,6 +60,8 @@ Our focus continues to remain on an easy installation experience, and an easy us
|
||||
- Support loading models in the safetensor format, for improved safety
|
||||
|
||||
### Detailed changelog
|
||||
* 2.4.24 - 9 Jan 2022 - Urgent fix for failures on old/long-term-support browsers. Thanks @JeLuf.
|
||||
* 2.4.23/22 - 29 Dec 2022 - Allow rolling back from the upcoming v2.5 change (in beta).
|
||||
* 2.4.21 - 23 Dec 2022 - Speed up image creation, by removing a delay (regression) of 4-5 seconds between clicking the `Make Image` button and calling the server.
|
||||
* 2.4.20 - 22 Dec 2022 - `Pause All` button to pause all the pending tasks. Thanks @JeLuf
|
||||
* 2.4.20 - 22 Dec 2022 - `Undo`/`Redo` buttons in the image editor. Thanks @JeLuf
|
||||
|
@ -156,6 +156,8 @@ def is_device_compatible(device):
|
||||
'''
|
||||
Returns True/False, and prints any compatibility errors
|
||||
'''
|
||||
# static variable "history".
|
||||
is_device_compatible.history = getattr(is_device_compatible, 'history', {})
|
||||
try:
|
||||
validate_device_id(device, log_prefix='is_device_compatible')
|
||||
except:
|
||||
@ -168,7 +170,9 @@ def is_device_compatible(device):
|
||||
_, mem_total = torch.cuda.mem_get_info(device)
|
||||
mem_total /= float(10**9)
|
||||
if mem_total < 3.0:
|
||||
if is_device_compatible.history.get(device) == None:
|
||||
log.warn(f'GPU {device} with less than 3 GB of VRAM is not compatible with Stable Diffusion')
|
||||
is_device_compatible.history[device] = 1
|
||||
return False
|
||||
except RuntimeError as e:
|
||||
log.error(str(e))
|
||||
|
@ -44,7 +44,13 @@ def load_default_models(context: Context):
|
||||
for model_type in MODELS_TO_LOAD_ON_START:
|
||||
context.model_paths[model_type] = resolve_model_to_use(model_type=model_type)
|
||||
set_model_config_path(context, model_type)
|
||||
try:
|
||||
load_model(context, model_type)
|
||||
except Exception as e:
|
||||
log.error(f'[red]Error while loading {model_type} model: {context.model_paths[model_type]}[/red]')
|
||||
log.error(f'[red]Error: {e}[/red]')
|
||||
log.error(f'[red]Consider to remove the model from the model folder.[red]')
|
||||
|
||||
|
||||
def unload_all(context: Context):
|
||||
for model_type in KNOWN_MODEL_TYPES:
|
||||
@ -190,6 +196,30 @@ def getModels():
|
||||
}
|
||||
|
||||
models_scanned = 0
|
||||
|
||||
class MaliciousModelException(Exception):
|
||||
"Raised when picklescan reports a problem with a model"
|
||||
pass
|
||||
|
||||
def scan_directory(directory, suffixes):
|
||||
nonlocal models_scanned
|
||||
tree = []
|
||||
for entry in os.scandir(directory):
|
||||
if entry.is_file() and True in [entry.name.endswith(s) for s in suffixes]:
|
||||
mtime = entry.stat().st_mtime
|
||||
mod_time = known_models[entry.path] if entry.path in known_models else -1
|
||||
if mod_time != mtime:
|
||||
models_scanned += 1
|
||||
if is_malicious_model(entry.path):
|
||||
raise MaliciousModelException(entry.path)
|
||||
known_models[entry.path] = mtime
|
||||
tree.append(entry.name.rsplit('.',1)[0])
|
||||
elif entry.is_dir():
|
||||
scan=scan_directory(entry.path, suffixes)
|
||||
if len(scan) != 0:
|
||||
tree.append( (entry.name, scan ) )
|
||||
return tree
|
||||
|
||||
def listModels(model_type):
|
||||
nonlocal models_scanned
|
||||
|
||||
@ -198,26 +228,10 @@ def getModels():
|
||||
if not os.path.exists(models_dir):
|
||||
os.makedirs(models_dir)
|
||||
|
||||
for file in os.listdir(models_dir):
|
||||
for model_extension in model_extensions:
|
||||
if not file.endswith(model_extension):
|
||||
continue
|
||||
|
||||
model_path = os.path.join(models_dir, file)
|
||||
mtime = os.path.getmtime(model_path)
|
||||
mod_time = known_models[model_path] if model_path in known_models else -1
|
||||
if mod_time != mtime:
|
||||
models_scanned += 1
|
||||
if is_malicious_model(model_path):
|
||||
models['scan-error'] = file
|
||||
return
|
||||
known_models[model_path] = mtime
|
||||
|
||||
model_name = file[:-len(model_extension)]
|
||||
models['options'][model_type].append(model_name)
|
||||
|
||||
models['options'][model_type] = [*set(models['options'][model_type])] # remove duplicates
|
||||
models['options'][model_type].sort()
|
||||
try:
|
||||
models['options'][model_type] = scan_directory(models_dir, model_extensions)
|
||||
except MaliciousModelException as e:
|
||||
models['scan-error'] = e
|
||||
|
||||
# custom models
|
||||
listModels(model_type='stable-diffusion')
|
||||
|
@ -31,9 +31,9 @@ def make_images(req: GenerateImageRequest, task_data: TaskData, data_queue: queu
|
||||
context.stop_processing = False
|
||||
print_task_info(req, task_data)
|
||||
|
||||
images = make_images_internal(req, task_data, data_queue, task_temp_images, step_callback)
|
||||
images, seeds = make_images_internal(req, task_data, data_queue, task_temp_images, step_callback)
|
||||
|
||||
res = Response(req, task_data, images=construct_response(images, task_data, base_seed=req.seed))
|
||||
res = Response(req, task_data, images=construct_response(images, seeds, task_data, base_seed=req.seed))
|
||||
res = res.json()
|
||||
data_queue.put(json.dumps(res))
|
||||
log.info('Task completed')
|
||||
@ -53,7 +53,11 @@ def make_images_internal(req: GenerateImageRequest, task_data: TaskData, data_qu
|
||||
if task_data.save_to_disk_path is not None:
|
||||
save_images_to_disk(images, filtered_images, req, task_data)
|
||||
|
||||
return filtered_images if task_data.show_only_filtered_image or (task_data.use_face_correction is None and task_data.use_upscale is None) else images + filtered_images
|
||||
seeds = [*range(req.seed, req.seed + len(images))]
|
||||
if task_data.show_only_filtered_image or filtered_images is images:
|
||||
return filtered_images, seeds
|
||||
else:
|
||||
return images + filtered_images, seeds + seeds
|
||||
|
||||
def generate_images_internal(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback, stream_image_progress: bool):
|
||||
context.temp_images.clear()
|
||||
@ -84,12 +88,12 @@ def filter_images(task_data: TaskData, images: list, user_stopped):
|
||||
|
||||
return apply_filters(context, filters_to_apply, images, scale=task_data.upscale_amount)
|
||||
|
||||
def construct_response(images: list, task_data: TaskData, base_seed: int):
|
||||
def construct_response(images: list, seeds: list, task_data: TaskData, base_seed: int):
|
||||
return [
|
||||
ResponseImage(
|
||||
data=img_to_base64_str(img, task_data.output_format, task_data.output_quality),
|
||||
seed=base_seed + i
|
||||
) for i, img in enumerate(images)
|
||||
seed=seed,
|
||||
) for img, seed in zip(images, seeds)
|
||||
]
|
||||
|
||||
def make_step_callback(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback, stream_image_progress: bool):
|
||||
|
@ -32,7 +32,7 @@ def save_images_to_disk(images: list, filtered_images: list, req: GenerateImageR
|
||||
save_dir_path = os.path.join(task_data.save_to_disk_path, filename_regex.sub('_', task_data.session_id))
|
||||
metadata_entries = get_metadata_entries_for_request(req, task_data)
|
||||
|
||||
if task_data.show_only_filtered_image or filtered_images == images:
|
||||
if task_data.show_only_filtered_image or filtered_images is images:
|
||||
make_filename = make_filename_callback(req)
|
||||
save_images(filtered_images, save_dir_path, file_name=make_filename, output_format=task_data.output_format, output_quality=task_data.output_quality)
|
||||
save_dicts(metadata_entries, save_dir_path, file_name=make_filename, output_format=task_data.metadata_output_format)
|
||||
|
@ -25,7 +25,7 @@
|
||||
<div id="logo">
|
||||
<h1>
|
||||
Easy Diffusion
|
||||
<small>v2.5.4 <span id="updateBranchLabel"></span></small>
|
||||
<small>v2.5.5 <span id="updateBranchLabel"></span></small>
|
||||
</h1>
|
||||
</div>
|
||||
<div id="server-status">
|
||||
|
@ -2,12 +2,12 @@
|
||||
padding-left: 32px;
|
||||
text-align: left;
|
||||
padding-bottom: 20px;
|
||||
max-width: min-content;
|
||||
}
|
||||
|
||||
.editor-options-container {
|
||||
display: flex;
|
||||
row-gap: 10px;
|
||||
max-width: 210px;
|
||||
}
|
||||
|
||||
.editor-options-container > * {
|
||||
|
@ -251,6 +251,10 @@ button#resume {
|
||||
img {
|
||||
box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.15), 0 6px 20px 0 rgba(0, 0, 0, 0.15);
|
||||
}
|
||||
div.img-preview img {
|
||||
width:100%;
|
||||
height: 100%;
|
||||
}
|
||||
.line-separator {
|
||||
background: var(--background-color3);
|
||||
height: 1pt;
|
||||
|
@ -144,6 +144,13 @@ const TASK_MAPPING = {
|
||||
readUI: () => (maskSetting.checked ? imageInpainter.getImg() : undefined),
|
||||
parse: (val) => val
|
||||
},
|
||||
preserve_init_image_color_profile: { name: 'Preserve Color Profile',
|
||||
setUI: (preserve_init_image_color_profile) => {
|
||||
applyColorCorrectionField.checked = parseBoolean(preserve_init_image_color_profile)
|
||||
},
|
||||
readUI: () => applyColorCorrectionField.checked,
|
||||
parse: (val) => parseBoolean(val)
|
||||
},
|
||||
|
||||
use_face_correction: { name: 'Use Face Correction',
|
||||
setUI: (use_face_correction) => {
|
||||
@ -282,6 +289,7 @@ const TASK_MAPPING = {
|
||||
parse: (val) => val
|
||||
}
|
||||
}
|
||||
|
||||
function restoreTaskToUI(task, fieldsToSkip) {
|
||||
fieldsToSkip = fieldsToSkip || []
|
||||
|
||||
@ -320,20 +328,26 @@ function restoreTaskToUI(task, fieldsToSkip) {
|
||||
if (!('use_upscale' in task.reqBody)) {
|
||||
useUpscalingField.checked = false
|
||||
}
|
||||
if (!('mask' in task.reqBody)) {
|
||||
if (!('mask' in task.reqBody) && maskSetting.checked) {
|
||||
maskSetting.checked = false
|
||||
maskSetting.dispatchEvent(new Event("click"))
|
||||
}
|
||||
upscaleModelField.disabled = !useUpscalingField.checked
|
||||
upscaleAmountField.disabled = !useUpscalingField.checked
|
||||
|
||||
// Show the source picture if present
|
||||
initImagePreview.src = (task.reqBody.init_image == undefined ? '' : task.reqBody.init_image)
|
||||
if (IMAGE_REGEX.test(initImagePreview.src)) {
|
||||
if (Boolean(task.reqBody.mask)) {
|
||||
setTimeout(() => { // add a delay to insure this happens AFTER the main image loads (which reloads the inpainter)
|
||||
imageInpainter.setImg(task.reqBody.mask)
|
||||
}, 250)
|
||||
// hide/show source picture as needed
|
||||
if (IMAGE_REGEX.test(initImagePreview.src) && task.reqBody.init_image == undefined) {
|
||||
// hide source image
|
||||
initImageClearBtn.dispatchEvent(new Event("click"))
|
||||
}
|
||||
else if (task.reqBody.init_image !== undefined) {
|
||||
// listen for inpainter loading event, which happens AFTER the main image loads (which reloads the inpainter)
|
||||
initImagePreview.addEventListener('load', function() {
|
||||
if (Boolean(task.reqBody.mask)) {
|
||||
imageInpainter.setImg(task.reqBody.mask)
|
||||
}
|
||||
}, { once: true })
|
||||
initImagePreview.src = task.reqBody.init_image
|
||||
}
|
||||
}
|
||||
function readUI() {
|
||||
@ -451,7 +465,7 @@ async function parseContent(text) {
|
||||
}
|
||||
// Normal txt file.
|
||||
const task = parseTaskFromText(text)
|
||||
if (task) {
|
||||
if (text.toLowerCase().includes('seed:') && task) { // only parse valid task content
|
||||
restoreTaskToUI(task)
|
||||
return true
|
||||
} else {
|
||||
|
@ -835,10 +835,13 @@
|
||||
* @memberof Task
|
||||
*/
|
||||
async post(timeout=-1) {
|
||||
if (typeof performance == "object" && performance.mark && performance.measure) {
|
||||
performance.mark('make-render-request')
|
||||
if (performance.getEntriesByName('click-makeImage', 'mark').length > 0) {
|
||||
console.log('delay between clicking and making the server request:', performance.measure('diff', 'click-makeImage', 'make-render-request').duration + ' ms')
|
||||
}
|
||||
}
|
||||
|
||||
let jsonResponse = await super.post('/render', timeout)
|
||||
if (typeof jsonResponse?.task !== 'number') {
|
||||
console.warn('Endpoint error response: ', jsonResponse)
|
||||
|
@ -440,7 +440,10 @@ function getUncompletedTaskEntries() {
|
||||
}
|
||||
|
||||
function makeImage() {
|
||||
if (typeof performance == "object" && performance.mark) {
|
||||
performance.mark('click-makeImage')
|
||||
}
|
||||
|
||||
if (!SD.isServerAvailable()) {
|
||||
alert('The server is not available.')
|
||||
return
|
||||
@ -1303,17 +1306,23 @@ async function getModels() {
|
||||
vaeOptions.unshift('') // add a None option
|
||||
hypernetworkOptions.unshift('') // add a None option
|
||||
|
||||
function createModelOptions(modelField, selectedModel) {
|
||||
return function(modelName) {
|
||||
function createModelOptions(modelField, selectedModel, path="") {
|
||||
return function fn(modelName) {
|
||||
if (typeof(modelName) == 'string') {
|
||||
const modelOption = document.createElement('option')
|
||||
modelOption.value = modelName
|
||||
modelOption.innerText = modelName !== '' ? modelName : 'None'
|
||||
modelOption.value = path + modelName
|
||||
modelOption.innerHTML = modelName !== '' ? (path != "" ? " "+modelName : modelName) : 'None'
|
||||
|
||||
if (modelName === selectedModel) {
|
||||
modelOption.selected = true
|
||||
}
|
||||
|
||||
modelField.appendChild(modelOption)
|
||||
} else {
|
||||
const modelGroup = document.createElement('optgroup')
|
||||
modelGroup.label = path + modelName[0]
|
||||
modelField.appendChild(modelGroup)
|
||||
modelName[1].forEach( createModelOptions(modelField, selectedModel, path + modelName[0] + "/" ) )
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user