mirror of
https://github.com/easydiffusion/easydiffusion.git
synced 2025-01-16 03:08:20 +01:00
Remove unused patch files
This commit is contained in:
parent
accfec9007
commit
aa59575df3
@ -1,162 +0,0 @@
|
|||||||
diff --git a/optimizedSD/ddpm.py b/optimizedSD/ddpm.py
|
|
||||||
index 79058bc..a473411 100644
|
|
||||||
--- a/optimizedSD/ddpm.py
|
|
||||||
+++ b/optimizedSD/ddpm.py
|
|
||||||
@@ -564,12 +564,12 @@ class UNet(DDPM):
|
|
||||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
||||||
callback=callback, img_callback=img_callback)
|
|
||||||
|
|
||||||
+ yield from samples
|
|
||||||
+
|
|
||||||
if(self.turbo):
|
|
||||||
self.model1.to("cpu")
|
|
||||||
self.model2.to("cpu")
|
|
||||||
|
|
||||||
- return samples
|
|
||||||
-
|
|
||||||
@torch.no_grad()
|
|
||||||
def plms_sampling(self, cond,b, img,
|
|
||||||
ddim_use_original_steps=False,
|
|
||||||
@@ -608,10 +608,10 @@ class UNet(DDPM):
|
|
||||||
old_eps.append(e_t)
|
|
||||||
if len(old_eps) >= 4:
|
|
||||||
old_eps.pop(0)
|
|
||||||
- if callback: callback(i)
|
|
||||||
- if img_callback: img_callback(pred_x0, i)
|
|
||||||
+ if callback: yield from callback(i)
|
|
||||||
+ if img_callback: yield from img_callback(pred_x0, i)
|
|
||||||
|
|
||||||
- return img
|
|
||||||
+ yield from img_callback(img, len(iterator)-1)
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
|
||||||
@@ -740,13 +740,13 @@ class UNet(DDPM):
|
|
||||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
||||||
unconditional_conditioning=unconditional_conditioning)
|
|
||||||
|
|
||||||
- if callback: callback(i)
|
|
||||||
- if img_callback: img_callback(x_dec, i)
|
|
||||||
+ if callback: yield from callback(i)
|
|
||||||
+ if img_callback: yield from img_callback(x_dec, i)
|
|
||||||
|
|
||||||
if mask is not None:
|
|
||||||
- return x0 * mask + (1. - mask) * x_dec
|
|
||||||
+ x_dec = x0 * mask + (1. - mask) * x_dec
|
|
||||||
|
|
||||||
- return x_dec
|
|
||||||
+ yield from img_callback(x_dec, len(iterator)-1)
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
@@ -820,12 +820,12 @@ class UNet(DDPM):
|
|
||||||
|
|
||||||
|
|
||||||
d = to_d(x, sigma_hat, denoised)
|
|
||||||
- if callback: callback(i)
|
|
||||||
- if img_callback: img_callback(x, i)
|
|
||||||
+ if callback: yield from callback(i)
|
|
||||||
+ if img_callback: yield from img_callback(x, i)
|
|
||||||
dt = sigmas[i + 1] - sigma_hat
|
|
||||||
# Euler method
|
|
||||||
x = x + d * dt
|
|
||||||
- return x
|
|
||||||
+ yield from img_callback(x, len(sigmas)-1)
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def euler_ancestral_sampling(self,ac,x, S, cond, unconditional_conditioning = None, unconditional_guidance_scale = 1,extra_args=None, callback=None, disable=None, img_callback=None):
|
|
||||||
@@ -852,14 +852,14 @@ class UNet(DDPM):
|
|
||||||
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
||||||
|
|
||||||
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
|
|
||||||
- if callback: callback(i)
|
|
||||||
- if img_callback: img_callback(x, i)
|
|
||||||
+ if callback: yield from callback(i)
|
|
||||||
+ if img_callback: yield from img_callback(x, i)
|
|
||||||
d = to_d(x, sigmas[i], denoised)
|
|
||||||
# Euler method
|
|
||||||
dt = sigma_down - sigmas[i]
|
|
||||||
x = x + d * dt
|
|
||||||
x = x + torch.randn_like(x) * sigma_up
|
|
||||||
- return x
|
|
||||||
+ yield from img_callback(x, len(sigmas)-1)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -892,8 +892,8 @@ class UNet(DDPM):
|
|
||||||
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
||||||
|
|
||||||
d = to_d(x, sigma_hat, denoised)
|
|
||||||
- if callback: callback(i)
|
|
||||||
- if img_callback: img_callback(x, i)
|
|
||||||
+ if callback: yield from callback(i)
|
|
||||||
+ if img_callback: yield from img_callback(x, i)
|
|
||||||
dt = sigmas[i + 1] - sigma_hat
|
|
||||||
if sigmas[i + 1] == 0:
|
|
||||||
# Euler method
|
|
||||||
@@ -913,7 +913,7 @@ class UNet(DDPM):
|
|
||||||
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
|
||||||
d_prime = (d + d_2) / 2
|
|
||||||
x = x + d_prime * dt
|
|
||||||
- return x
|
|
||||||
+ yield from img_callback(x, len(sigmas)-1)
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
@@ -944,8 +944,8 @@ class UNet(DDPM):
|
|
||||||
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
|
|
||||||
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
||||||
|
|
||||||
- if callback: callback(i)
|
|
||||||
- if img_callback: img_callback(x, i)
|
|
||||||
+ if callback: yield from callback(i)
|
|
||||||
+ if img_callback: yield from img_callback(x, i)
|
|
||||||
|
|
||||||
d = to_d(x, sigma_hat, denoised)
|
|
||||||
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
|
|
||||||
@@ -966,7 +966,7 @@ class UNet(DDPM):
|
|
||||||
|
|
||||||
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
|
||||||
x = x + d_2 * dt_2
|
|
||||||
- return x
|
|
||||||
+ yield from img_callback(x, len(sigmas)-1)
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
@@ -994,8 +994,8 @@ class UNet(DDPM):
|
|
||||||
|
|
||||||
|
|
||||||
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
|
|
||||||
- if callback: callback(i)
|
|
||||||
- if img_callback: img_callback(x, i)
|
|
||||||
+ if callback: yield from callback(i)
|
|
||||||
+ if img_callback: yield from img_callback(x, i)
|
|
||||||
d = to_d(x, sigmas[i], denoised)
|
|
||||||
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
|
|
||||||
sigma_mid = ((sigmas[i] ** (1 / 3) + sigma_down ** (1 / 3)) / 2) ** 3
|
|
||||||
@@ -1016,7 +1016,7 @@ class UNet(DDPM):
|
|
||||||
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
|
||||||
x = x + d_2 * dt_2
|
|
||||||
x = x + torch.randn_like(x) * sigma_up
|
|
||||||
- return x
|
|
||||||
+ yield from img_callback(x, len(sigmas)-1)
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
@@ -1042,8 +1042,8 @@ class UNet(DDPM):
|
|
||||||
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
|
|
||||||
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
||||||
|
|
||||||
- if callback: callback(i)
|
|
||||||
- if img_callback: img_callback(x, i)
|
|
||||||
+ if callback: yield from callback(i)
|
|
||||||
+ if img_callback: yield from img_callback(x, i)
|
|
||||||
|
|
||||||
d = to_d(x, sigmas[i], denoised)
|
|
||||||
ds.append(d)
|
|
||||||
@@ -1054,4 +1054,4 @@ class UNet(DDPM):
|
|
||||||
cur_order = min(i + 1, order)
|
|
||||||
coeffs = [linear_multistep_coeff(cur_order, sigmas.cpu(), i, j) for j in range(cur_order)]
|
|
||||||
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
|
|
||||||
- return x
|
|
||||||
+ yield from img_callback(x, len(sigmas)-1)
|
|
@ -1,84 +0,0 @@
|
|||||||
diff --git a/ldm/models/diffusion/ddim.py b/ldm/models/diffusion/ddim.py
|
|
||||||
index 27ead0e..6215939 100644
|
|
||||||
--- a/ldm/models/diffusion/ddim.py
|
|
||||||
+++ b/ldm/models/diffusion/ddim.py
|
|
||||||
@@ -100,7 +100,7 @@ class DDIMSampler(object):
|
|
||||||
size = (batch_size, C, H, W)
|
|
||||||
print(f'Data shape for DDIM sampling is {size}, eta {eta}')
|
|
||||||
|
|
||||||
- samples, intermediates = self.ddim_sampling(conditioning, size,
|
|
||||||
+ samples = self.ddim_sampling(conditioning, size,
|
|
||||||
callback=callback,
|
|
||||||
img_callback=img_callback,
|
|
||||||
quantize_denoised=quantize_x0,
|
|
||||||
@@ -117,7 +117,8 @@ class DDIMSampler(object):
|
|
||||||
dynamic_threshold=dynamic_threshold,
|
|
||||||
ucg_schedule=ucg_schedule
|
|
||||||
)
|
|
||||||
- return samples, intermediates
|
|
||||||
+ # return samples, intermediates
|
|
||||||
+ yield from samples
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def ddim_sampling(self, cond, shape,
|
|
||||||
@@ -168,14 +169,15 @@ class DDIMSampler(object):
|
|
||||||
unconditional_conditioning=unconditional_conditioning,
|
|
||||||
dynamic_threshold=dynamic_threshold)
|
|
||||||
img, pred_x0 = outs
|
|
||||||
- if callback: callback(i)
|
|
||||||
- if img_callback: img_callback(pred_x0, i)
|
|
||||||
+ if callback: yield from callback(i)
|
|
||||||
+ if img_callback: yield from img_callback(pred_x0, i)
|
|
||||||
|
|
||||||
if index % log_every_t == 0 or index == total_steps - 1:
|
|
||||||
intermediates['x_inter'].append(img)
|
|
||||||
intermediates['pred_x0'].append(pred_x0)
|
|
||||||
|
|
||||||
- return img, intermediates
|
|
||||||
+ # return img, intermediates
|
|
||||||
+ yield from img_callback(pred_x0, len(iterator)-1)
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
|
||||||
diff --git a/ldm/models/diffusion/plms.py b/ldm/models/diffusion/plms.py
|
|
||||||
index 7002a36..0951f39 100644
|
|
||||||
--- a/ldm/models/diffusion/plms.py
|
|
||||||
+++ b/ldm/models/diffusion/plms.py
|
|
||||||
@@ -96,7 +96,7 @@ class PLMSSampler(object):
|
|
||||||
size = (batch_size, C, H, W)
|
|
||||||
print(f'Data shape for PLMS sampling is {size}')
|
|
||||||
|
|
||||||
- samples, intermediates = self.plms_sampling(conditioning, size,
|
|
||||||
+ samples = self.plms_sampling(conditioning, size,
|
|
||||||
callback=callback,
|
|
||||||
img_callback=img_callback,
|
|
||||||
quantize_denoised=quantize_x0,
|
|
||||||
@@ -112,7 +112,8 @@ class PLMSSampler(object):
|
|
||||||
unconditional_conditioning=unconditional_conditioning,
|
|
||||||
dynamic_threshold=dynamic_threshold,
|
|
||||||
)
|
|
||||||
- return samples, intermediates
|
|
||||||
+ #return samples, intermediates
|
|
||||||
+ yield from samples
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def plms_sampling(self, cond, shape,
|
|
||||||
@@ -165,14 +166,15 @@ class PLMSSampler(object):
|
|
||||||
old_eps.append(e_t)
|
|
||||||
if len(old_eps) >= 4:
|
|
||||||
old_eps.pop(0)
|
|
||||||
- if callback: callback(i)
|
|
||||||
- if img_callback: img_callback(pred_x0, i)
|
|
||||||
+ if callback: yield from callback(i)
|
|
||||||
+ if img_callback: yield from img_callback(pred_x0, i)
|
|
||||||
|
|
||||||
if index % log_every_t == 0 or index == total_steps - 1:
|
|
||||||
intermediates['x_inter'].append(img)
|
|
||||||
intermediates['pred_x0'].append(pred_x0)
|
|
||||||
|
|
||||||
- return img, intermediates
|
|
||||||
+ # return img, intermediates
|
|
||||||
+ yield from img_callback(pred_x0, len(iterator)-1)
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
|
Loading…
Reference in New Issue
Block a user