Merge pull request #1322 from cmdr2/cf

CodeFormer
This commit is contained in:
cmdr2 2023-06-03 09:55:21 +05:30 committed by GitHub
commit ab0218050c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
12 changed files with 191 additions and 177 deletions

View File

@ -1,101 +0,0 @@
# this script runs inside the legacy "stable-diffusion" folder
from sdkit.models import download_model, get_model_info_from_db
from sdkit.utils import hash_file_quick
import os
import shutil
from glob import glob
import traceback
models_base_dir = os.path.abspath(os.path.join("..", "models"))
models_to_check = {
"stable-diffusion": [
{"file_name": "sd-v1-4.ckpt", "model_id": "1.4"},
],
"gfpgan": [
{"file_name": "GFPGANv1.4.pth", "model_id": "1.4"},
],
"realesrgan": [
{"file_name": "RealESRGAN_x4plus.pth", "model_id": "x4plus"},
{"file_name": "RealESRGAN_x4plus_anime_6B.pth", "model_id": "x4plus_anime_6"},
],
"vae": [
{"file_name": "vae-ft-mse-840000-ema-pruned.ckpt", "model_id": "vae-ft-mse-840000-ema-pruned"},
],
}
MODEL_EXTENSIONS = { # copied from easydiffusion/model_manager.py
"stable-diffusion": [".ckpt", ".safetensors"],
"vae": [".vae.pt", ".ckpt", ".safetensors"],
"hypernetwork": [".pt", ".safetensors"],
"gfpgan": [".pth"],
"realesrgan": [".pth"],
"lora": [".ckpt", ".safetensors"],
}
def download_if_necessary(model_type: str, file_name: str, model_id: str):
model_path = os.path.join(models_base_dir, model_type, file_name)
expected_hash = get_model_info_from_db(model_type=model_type, model_id=model_id)["quick_hash"]
other_models_exist = any_model_exists(model_type)
known_model_exists = os.path.exists(model_path)
known_model_is_corrupt = known_model_exists and hash_file_quick(model_path) != expected_hash
if known_model_is_corrupt or (not other_models_exist and not known_model_exists):
print("> download", model_type, model_id)
download_model(model_type, model_id, download_base_dir=models_base_dir)
def init():
migrate_legacy_model_location()
for model_type, models in models_to_check.items():
for model in models:
try:
download_if_necessary(model_type, model["file_name"], model["model_id"])
except:
traceback.print_exc()
fail(model_type)
print(model_type, "model(s) found.")
### utilities
def any_model_exists(model_type: str) -> bool:
extensions = MODEL_EXTENSIONS.get(model_type, [])
for ext in extensions:
if any(glob(f"{models_base_dir}/{model_type}/**/*{ext}", recursive=True)):
return True
return False
def migrate_legacy_model_location():
'Move the models inside the legacy "stable-diffusion" folder, to their respective folders'
for model_type, models in models_to_check.items():
for model in models:
file_name = model["file_name"]
if os.path.exists(file_name):
dest_dir = os.path.join(models_base_dir, model_type)
os.makedirs(dest_dir, exist_ok=True)
shutil.move(file_name, os.path.join(dest_dir, file_name))
def fail(model_name):
print(
f"""Error downloading the {model_name} model. Sorry about that, please try to:
1. Run this installer again.
2. If that doesn't fix it, please try to download the file manually. The address to download from, and the destination to save to are printed above this message.
3. If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB
4. If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues
Thanks!"""
)
exit(1)
### start
init()

View File

@ -18,7 +18,7 @@ os_name = platform.system()
modules_to_check = {
"torch": ("1.11.0", "1.13.1", "2.0.0"),
"torchvision": ("0.12.0", "0.14.1", "0.15.1"),
"sdkit": "1.0.98",
"sdkit": "1.0.101",
"stable-diffusion-sdkit": "2.1.4",
"rich": "12.6.0",
"uvicorn": "0.19.0",

View File

@ -79,13 +79,6 @@ call WHERE uvicorn > .tmp
@echo conda_sd_ui_deps_installed >> ..\scripts\install_status.txt
)
@rem Download the required models
call python ..\scripts\check_models.py
if "%ERRORLEVEL%" NEQ "0" (
pause
exit /b
)
@>nul findstr /m "sd_install_complete" ..\scripts\install_status.txt
@if "%ERRORLEVEL%" NEQ "0" (
@echo sd_weights_downloaded >> ..\scripts\install_status.txt

View File

@ -51,12 +51,6 @@ if ! command -v uvicorn &> /dev/null; then
fail "UI packages not found!"
fi
# Download the required models
if ! python ../scripts/check_models.py; then
read -p "Press any key to continue"
exit 1
fi
if [ `grep -c sd_install_complete ../scripts/install_status.txt` -gt "0" ]; then
echo sd_weights_downloaded >> ../scripts/install_status.txt
echo sd_install_complete >> ../scripts/install_status.txt

View File

@ -90,8 +90,8 @@ def init():
os.makedirs(USER_SERVER_PLUGINS_DIR, exist_ok=True)
# https://pytorch.org/docs/stable/storage.html
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
warnings.filterwarnings("ignore", category=UserWarning, message="TypedStorage is deprecated")
load_server_plugins()
update_render_threads()
@ -221,12 +221,41 @@ def open_browser():
webbrowser.open(f"http://localhost:{port}")
Console().print(Panel(
"\n" +
"[white]Easy Diffusion is ready to serve requests.\n\n" +
"A new browser tab should have been opened by now.\n" +
f"If not, please open your web browser and navigate to [bold yellow underline]http://localhost:{port}/\n",
title="Easy Diffusion is ready", style="bold yellow on blue"))
Console().print(
Panel(
"\n"
+ "[white]Easy Diffusion is ready to serve requests.\n\n"
+ "A new browser tab should have been opened by now.\n"
+ f"If not, please open your web browser and navigate to [bold yellow underline]http://localhost:{port}/\n",
title="Easy Diffusion is ready",
style="bold yellow on blue",
)
)
def fail_and_die(fail_type: str, data: str):
suggestions = [
"Run this installer again.",
"If those steps don't help, please copy *all* the error messages in this window, and ask the community at https://discord.com/invite/u9yhsFmEkB",
"If that doesn't solve the problem, please file an issue at https://github.com/cmdr2/stable-diffusion-ui/issues",
]
if fail_type == "model_download":
fail_label = f"Error downloading the {data} model"
suggestions.insert(
1,
"If that doesn't fix it, please try to download the file manually. The address to download from, and the destination to save to are printed above this message.",
)
else:
fail_label = "Error while installing Easy Diffusion"
msg = [f"{fail_label}. Sorry about that, please try to:"]
for i, suggestion in enumerate(suggestions):
msg.append(f"{i+1}. {suggestion}")
msg.append("Thanks!")
print("\n".join(msg))
exit(1)
def get_image_modifiers():

View File

@ -1,10 +1,14 @@
import os
import shutil
from glob import glob
import traceback
from easydiffusion import app
from easydiffusion.types import TaskData
from easydiffusion.utils import log
from sdkit import Context
from sdkit.models import load_model, scan_model, unload_model
from sdkit.models import load_model, scan_model, unload_model, download_model, get_model_info_from_db
from sdkit.utils import hash_file_quick
KNOWN_MODEL_TYPES = [
"stable-diffusion",
@ -13,6 +17,7 @@ KNOWN_MODEL_TYPES = [
"gfpgan",
"realesrgan",
"lora",
"codeformer",
]
MODEL_EXTENSIONS = {
"stable-diffusion": [".ckpt", ".safetensors"],
@ -21,14 +26,22 @@ MODEL_EXTENSIONS = {
"gfpgan": [".pth"],
"realesrgan": [".pth"],
"lora": [".ckpt", ".safetensors"],
"codeformer": [".pth"],
}
DEFAULT_MODELS = {
"stable-diffusion": [ # needed to support the legacy installations
"custom-model", # only one custom model file was supported initially, creatively named 'custom-model'
"sd-v1-4", # Default fallback.
"stable-diffusion": [
{"file_name": "sd-v1-4.ckpt", "model_id": "1.4"},
],
"gfpgan": [
{"file_name": "GFPGANv1.4.pth", "model_id": "1.4"},
],
"realesrgan": [
{"file_name": "RealESRGAN_x4plus.pth", "model_id": "x4plus"},
{"file_name": "RealESRGAN_x4plus_anime_6B.pth", "model_id": "x4plus_anime_6"},
],
"vae": [
{"file_name": "vae-ft-mse-840000-ema-pruned.ckpt", "model_id": "vae-ft-mse-840000-ema-pruned"},
],
"gfpgan": ["GFPGANv1.3"],
"realesrgan": ["RealESRGAN_x4plus"],
}
MODELS_TO_LOAD_ON_START = ["stable-diffusion", "vae", "hypernetwork", "lora"]
@ -37,6 +50,8 @@ known_models = {}
def init():
make_model_folders()
migrate_legacy_model_location() # if necessary
download_default_models_if_necessary()
getModels() # run this once, to cache the picklescan results
@ -75,7 +90,7 @@ def resolve_model_to_use(model_name: str = None, model_type: str = None):
default_models = DEFAULT_MODELS.get(model_type, [])
config = app.getConfig()
model_dirs = [os.path.join(app.MODELS_DIR, model_type), app.SD_DIR]
model_dir = os.path.join(app.MODELS_DIR, model_type)
if not model_name: # When None try user configured model.
# config = getConfig()
if "model" in config and model_type in config["model"]:
@ -83,45 +98,41 @@ def resolve_model_to_use(model_name: str = None, model_type: str = None):
if model_name:
# Check models directory
models_dir_path = os.path.join(app.MODELS_DIR, model_type, model_name)
model_path = os.path.join(model_dir, model_name)
if os.path.exists(model_path):
return model_path
for model_extension in model_extensions:
if os.path.exists(models_dir_path + model_extension):
return models_dir_path + model_extension
if os.path.exists(model_path + model_extension):
return model_path + model_extension
if os.path.exists(model_name + model_extension):
return os.path.abspath(model_name + model_extension)
# Default locations
if model_name in default_models:
default_model_path = os.path.join(app.SD_DIR, model_name)
for model_extension in model_extensions:
if os.path.exists(default_model_path + model_extension):
return default_model_path + model_extension
# Can't find requested model, check the default paths.
for default_model in default_models:
for model_dir in model_dirs:
default_model_path = os.path.join(model_dir, default_model)
for model_extension in model_extensions:
if os.path.exists(default_model_path + model_extension):
if model_name is not None:
log.warn(
f"Could not find the configured custom model {model_name}{model_extension}. Using the default one: {default_model_path}{model_extension}"
)
return default_model_path + model_extension
if model_type == "stable-diffusion":
for default_model in default_models:
default_model_path = os.path.join(model_dir, default_model["file_name"])
if os.path.exists(default_model_path):
if model_name is not None:
log.warn(
f"Could not find the configured custom model {model_name}. Using the default one: {default_model_path}"
)
return default_model_path
return None
def reload_models_if_necessary(context: Context, task_data: TaskData):
use_upscale_lower = task_data.use_upscale.lower() if task_data.use_upscale else ""
face_fix_lower = task_data.use_face_correction.lower() if task_data.use_face_correction else ""
upscale_lower = task_data.use_upscale.lower() if task_data.use_upscale else ""
model_paths_in_req = {
"stable-diffusion": task_data.use_stable_diffusion_model,
"vae": task_data.use_vae_model,
"hypernetwork": task_data.use_hypernetwork_model,
"gfpgan": task_data.use_face_correction,
"realesrgan": task_data.use_upscale if "realesrgan" in use_upscale_lower else None,
"latent_upscaler": True if task_data.use_upscale == "latent_upscaler" else None,
"codeformer": task_data.use_face_correction if "codeformer" in face_fix_lower else None,
"gfpgan": task_data.use_face_correction if "gfpgan" in face_fix_lower else None,
"realesrgan": task_data.use_upscale if "realesrgan" in upscale_lower else None,
"latent_upscaler": True if "latent_upscaler" in upscale_lower else None,
"nsfw_checker": True if task_data.block_nsfw else None,
"lora": task_data.use_lora_model,
}
@ -131,6 +142,11 @@ def reload_models_if_necessary(context: Context, task_data: TaskData):
if context.model_paths.get(model_type) != path
}
if task_data.codeformer_upscale_faces and "realesrgan" not in models_to_reload.keys():
models_to_reload["realesrgan"] = resolve_model_to_use(
DEFAULT_MODELS["realesrgan"][0]["file_name"], "realesrgan"
)
if set_vram_optimizations(context) or set_clip_skip(context, task_data): # reload SD
models_to_reload["stable-diffusion"] = model_paths_in_req["stable-diffusion"]
@ -157,7 +173,13 @@ def resolve_model_paths(task_data: TaskData):
task_data.use_lora_model = resolve_model_to_use(task_data.use_lora_model, model_type="lora")
if task_data.use_face_correction:
task_data.use_face_correction = resolve_model_to_use(task_data.use_face_correction, "gfpgan")
if "gfpgan" in task_data.use_face_correction.lower():
model_type = "gfpgan"
elif "codeformer" in task_data.use_face_correction.lower():
model_type = "codeformer"
download_if_necessary("codeformer", "codeformer.pth", "codeformer-0.1.0")
task_data.use_face_correction = resolve_model_to_use(task_data.use_face_correction, model_type)
if task_data.use_upscale and "realesrgan" in task_data.use_upscale.lower():
task_data.use_upscale = resolve_model_to_use(task_data.use_upscale, "realesrgan")
@ -167,7 +189,31 @@ def fail_if_models_did_not_load(context: Context):
if model_type in context.model_load_errors:
e = context.model_load_errors[model_type]
raise Exception(f"Could not load the {model_type} model! Reason: " + e)
# concat 'e', don't use in format string (injection attack)
def download_default_models_if_necessary():
for model_type, models in DEFAULT_MODELS.items():
for model in models:
try:
download_if_necessary(model_type, model["file_name"], model["model_id"])
except:
traceback.print_exc()
app.fail_and_die(fail_type="model_download", data=model_type)
print(model_type, "model(s) found.")
def download_if_necessary(model_type: str, file_name: str, model_id: str):
model_path = os.path.join(app.MODELS_DIR, model_type, file_name)
expected_hash = get_model_info_from_db(model_type=model_type, model_id=model_id)["quick_hash"]
other_models_exist = any_model_exists(model_type)
known_model_exists = os.path.exists(model_path)
known_model_is_corrupt = known_model_exists and hash_file_quick(model_path) != expected_hash
if known_model_is_corrupt or (not other_models_exist and not known_model_exists):
print("> download", model_type, model_id)
download_model(model_type, model_id, download_base_dir=app.MODELS_DIR)
def set_vram_optimizations(context: Context):
@ -181,6 +227,26 @@ def set_vram_optimizations(context: Context):
return False
def migrate_legacy_model_location():
'Move the models inside the legacy "stable-diffusion" folder, to their respective folders'
for model_type, models in DEFAULT_MODELS.items():
for model in models:
file_name = model["file_name"]
legacy_path = os.path.join(app.SD_DIR, file_name)
if os.path.exists(legacy_path):
shutil.move(legacy_path, os.path.join(app.MODELS_DIR, model_type, file_name))
def any_model_exists(model_type: str) -> bool:
extensions = MODEL_EXTENSIONS.get(model_type, [])
for ext in extensions:
if any(glob(f"{app.MODELS_DIR}/{model_type}/**/*{ext}", recursive=True)):
return True
return False
def set_clip_skip(context: Context, task_data: TaskData):
clip_skip = task_data.clip_skip
@ -238,17 +304,12 @@ def is_malicious_model(file_path):
def getModels():
models = {
"active": {
"stable-diffusion": "sd-v1-4",
"vae": "",
"hypernetwork": "",
"lora": "",
},
"options": {
"stable-diffusion": ["sd-v1-4"],
"vae": [],
"hypernetwork": [],
"lora": [],
"codeformer": ["codeformer"],
},
}
@ -309,9 +370,4 @@ def getModels():
if models_scanned > 0:
log.info(f"[green]Scanned {models_scanned} models. Nothing infected[/]")
# legacy
custom_weight_path = os.path.join(app.SD_DIR, "custom-model.ckpt")
if os.path.exists(custom_weight_path):
models["options"]["stable-diffusion"].append("custom-model")
return models

View File

@ -34,6 +34,7 @@ def init(device):
context.temp_images = {}
context.partial_x_samples = None
context.model_load_errors = {}
context.enable_codeformer = True
from easydiffusion import app
@ -160,7 +161,11 @@ def filter_images(req: GenerateImageRequest, task_data: TaskData, images: list,
filter_params = {}
if task_data.block_nsfw:
filters_to_apply.append("nsfw_checker")
if task_data.use_face_correction and "gfpgan" in task_data.use_face_correction.lower():
if task_data.use_face_correction and "codeformer" in task_data.use_face_correction.lower():
filters_to_apply.append("codeformer")
filter_params["upscale_faces"] = task_data.codeformer_upscale_faces
elif task_data.use_face_correction and "gfpgan" in task_data.use_face_correction.lower():
filters_to_apply.append("gfpgan")
if task_data.use_upscale:
if "realesrgan" in task_data.use_upscale.lower():

View File

@ -23,7 +23,7 @@ class GenerateImageRequest(BaseModel):
sampler_name: str = None # "ddim", "plms", "heun", "euler", "euler_a", "dpm2", "dpm2_a", "lms"
hypernetwork_strength: float = 0
lora_alpha: float = 0
tiling: str = "none" # "none", "x", "y", "xy"
tiling: str = "none" # "none", "x", "y", "xy"
class TaskData(BaseModel):
@ -51,6 +51,7 @@ class TaskData(BaseModel):
stream_image_progress: bool = False
stream_image_progress_interval: int = 5
clip_skip: bool = False
codeformer_upscale_faces: bool = False
class MergeRequest(BaseModel):

View File

@ -263,7 +263,12 @@
<div><ul>
<li><b class="settings-subheader">Render Settings</b></li>
<li class="pl-5"><input id="stream_image_progress" name="stream_image_progress" type="checkbox"> <label for="stream_image_progress">Show a live preview <small>(uses more VRAM, slower images)</small></label></li>
<li class="pl-5"><input id="use_face_correction" name="use_face_correction" type="checkbox"> <label for="use_face_correction">Fix incorrect faces and eyes</label> <div style="display:inline-block;"><input id="gfpgan_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" /></div></li>
<li class="pl-5">
<input id="use_face_correction" name="use_face_correction" type="checkbox"> <label for="use_face_correction">Fix incorrect faces and eyes</label> <div style="display:inline-block;"><input id="gfpgan_model" type="text" spellcheck="false" autocomplete="off" class="model-filter" data-path="" /></div>
<div id="codeformer_settings" class="displayNone sub-settings">
<input id="codeformer_upscale_faces" name="codeformer_upscale_faces" type="checkbox"><label for="codeformer_upscale_faces">Upscale Faces <small>(improves the resolution of faces)</small></label>
</div>
</li>
<li class="pl-5">
<input id="use_upscale" name="use_upscale" type="checkbox"> <label for="use_upscale">Scale up by</label>
<select id="upscale_amount" name="upscale_amount">
@ -276,7 +281,7 @@
<option value="RealESRGAN_x4plus_anime_6B">RealESRGAN_x4plus_anime_6B</option>
<option value="latent_upscaler">Latent Upscaler 2x</option>
</select>
<div id="latent_upscaler_settings" class="displayNone">
<div id="latent_upscaler_settings" class="displayNone sub-settings">
<label for="latent_upscaler_steps_slider">Upscaling Steps:</label></td><td> <input id="latent_upscaler_steps_slider" name="latent_upscaler_steps_slider" class="editor-slider" value="10" type="range" min="1" max="50"> <input id="latent_upscaler_steps" name="latent_upscaler_steps" size="4" pattern="^[0-9\.]+$" onkeypress="preventNonNumericalInput(event)">
</div>
</li>

View File

@ -1303,7 +1303,7 @@ body.wait-pause {
display:none !important;
}
#latent_upscaler_settings {
.sub-settings {
padding-top: 3pt;
padding-bottom: 3pt;
padding-left: 5pt;
@ -1322,7 +1322,7 @@ body.wait-pause {
box-shadow: 0 0 10px rgba(0, 0, 0, 0.5);
z-index: 9999;
animation: slideInRight 0.5s ease forwards;
transition: bottom 0.5s ease; // Add a transition to smoothly reposition the toasts
transition: bottom 0.5s ease; /* Add a transition to smoothly reposition the toasts */
}
.toast-notification-error {

View File

@ -87,7 +87,7 @@ let promptStrengthField = document.querySelector("#prompt_strength")
let samplerField = document.querySelector("#sampler_name")
let samplerSelectionContainer = document.querySelector("#samplerSelection")
let useFaceCorrectionField = document.querySelector("#use_face_correction")
let gfpganModelField = new ModelDropdown(document.querySelector("#gfpgan_model"), "gfpgan")
let gfpganModelField = new ModelDropdown(document.querySelector("#gfpgan_model"), ["codeformer", "gfpgan"])
let useUpscalingField = document.querySelector("#use_upscale")
let upscaleModelField = document.querySelector("#upscale_model")
let upscaleAmountField = document.querySelector("#upscale_amount")
@ -270,7 +270,9 @@ function shiftOrConfirm(e, prompt, fn) {
confirm(
'<small>Tip: To skip this dialog, use shift-click or disable the "Confirm dangerous actions" setting in the Settings tab.</small>',
prompt,
() => { fn(e) }
() => {
fn(e)
}
)
}
}
@ -1261,6 +1263,10 @@ function getCurrentUserRequest() {
}
if (useFaceCorrectionField.checked) {
newTask.reqBody.use_face_correction = gfpganModelField.value
if (gfpganModelField.value.includes("codeformer")) {
newTask.reqBody.codeformer_upscale_faces = document.querySelector("#codeformer_upscale_faces").checked
}
}
if (useUpscalingField.checked) {
newTask.reqBody.use_upscale = upscaleModelField.value
@ -1574,18 +1580,33 @@ metadataOutputFormatField.disabled = !saveToDiskField.checked
gfpganModelField.disabled = !useFaceCorrectionField.checked
useFaceCorrectionField.addEventListener("change", function(e) {
gfpganModelField.disabled = !this.checked
onFixFaceModelChange()
})
function onFixFaceModelChange() {
let codeformerSettings = document.querySelector("#codeformer_settings")
if (gfpganModelField.value === "codeformer" && !gfpganModelField.disabled) {
codeformerSettings.classList.remove("displayNone")
} else {
codeformerSettings.classList.add("displayNone")
}
}
gfpganModelField.addEventListener("change", onFixFaceModelChange)
onFixFaceModelChange()
upscaleModelField.disabled = !useUpscalingField.checked
upscaleAmountField.disabled = !useUpscalingField.checked
useUpscalingField.addEventListener("change", function(e) {
upscaleModelField.disabled = !this.checked
upscaleAmountField.disabled = !this.checked
onUpscaleModelChange()
})
function onUpscaleModelChange() {
let upscale4x = document.querySelector("#upscale_amount_4x")
if (upscaleModelField.value === "latent_upscaler") {
if (upscaleModelField.value === "latent_upscaler" && !upscaleModelField.disabled) {
upscale4x.disabled = true
upscaleAmountField.value = "2"
latentUpscalerSettings.classList.remove("displayNone")

View File

@ -90,7 +90,12 @@ class ModelDropdown {
if (modelsOptions !== undefined) {
// reuse models from cache (only useful for plugins, which are loaded after models)
this.inputModels = modelsOptions[this.modelKey]
this.inputModels = []
let modelKeys = Array.isArray(this.modelKey) ? this.modelKey : [this.modelKey]
for (let i = 0; i < modelKeys.length; i++) {
let key = modelKeys[i]
this.inputModels.push(...modelsOptions[key])
}
this.populateModels()
}
document.addEventListener(
@ -98,6 +103,12 @@ class ModelDropdown {
this.bind(function(e) {
// reload the models
this.inputModels = modelsOptions[this.modelKey]
this.inputModels = []
let modelKeys = Array.isArray(this.modelKey) ? this.modelKey : [this.modelKey]
for (let i = 0; i < modelKeys.length; i++) {
let key = modelKeys[i]
this.inputModels.push(...modelsOptions[key])
}
this.populateModels()
}, this)
)