import queue import time import json import os import base64 import re import traceback import logging from sd_internal import device_manager from sd_internal import TaskData, Response, Image as ResponseImage, UserInitiatedStop from modules import model_loader, image_generator, image_utils, filters as image_filters from modules.types import Context, GenerateImageRequest log = logging.getLogger() thread_data = Context() ''' runtime data (bound locally to this thread), for e.g. device, references to loaded models, optimization flags etc ''' filename_regex = re.compile('[^a-zA-Z0-9]') def init(device): ''' Initializes the fields that will be bound to this runtime's thread_data, and sets the current torch device ''' thread_data.stop_processing = False thread_data.temp_images = {} thread_data.partial_x_samples = None device_manager.device_init(thread_data, device) def make_images(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback): try: return _make_images_internal(req, task_data, data_queue, task_temp_images, step_callback) except Exception as e: log.error(traceback.format_exc()) data_queue.put(json.dumps({ "status": 'failed', "detail": str(e) })) raise e def _make_images_internal(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback): images, user_stopped = generate_images(req, data_queue, task_temp_images, step_callback, task_data.stream_image_progress) images = apply_filters(task_data, images, user_stopped, task_data.show_only_filtered_image) if task_data.save_to_disk_path is not None: out_path = os.path.join(task_data.save_to_disk_path, filename_regex.sub('_', task_data.session_id)) save_images(images, out_path, metadata=req.to_metadata(), show_only_filtered_image=task_data.show_only_filtered_image) res = Response(req, task_data, images=construct_response(images)) res = res.json() data_queue.put(json.dumps(res)) log.info('Task completed') return res def generate_images(req: GenerateImageRequest, data_queue: queue.Queue, task_temp_images: list, step_callback, stream_image_progress: bool): log.info(req.to_metadata()) thread_data.temp_images.clear() image_generator.on_image_step = make_step_callback(req, data_queue, task_temp_images, step_callback, stream_image_progress) try: images = image_generator.make_images(context=thread_data, req=req) user_stopped = False except UserInitiatedStop: images = [] user_stopped = True if thread_data.partial_x_samples is not None: images = image_utils.latent_samples_to_images(thread_data, thread_data.partial_x_samples) thread_data.partial_x_samples = None finally: model_loader.gc(thread_data) images = [(image, req.seed + i, False) for i, image in enumerate(images)] return images, user_stopped def apply_filters(task_data: TaskData, images: list, user_stopped, show_only_filtered_image): if user_stopped or (task_data.use_face_correction is None and task_data.use_upscale is None): return images filters = [] if 'gfpgan' in task_data.use_face_correction.lower(): filters.append(image_filters.apply_gfpgan) if 'realesrgan' in task_data.use_face_correction.lower(): filters.append(image_filters.apply_realesrgan) filtered_images = [] for img, seed, _ in images: for filter_fn in filters: img = filter_fn(thread_data, img) filtered_images.append((img, seed, True)) if not show_only_filtered_image: filtered_images = images + filtered_images return filtered_images def save_images(images: list, save_to_disk_path, metadata: dict, show_only_filtered_image): if save_to_disk_path is None: return def get_image_id(i): img_id = base64.b64encode(int(time.time()+i).to_bytes(8, 'big')).decode() # Generate unique ID based on time. img_id = img_id.translate({43:None, 47:None, 61:None})[-8:] # Remove + / = and keep last 8 chars. return img_id def get_image_basepath(i): os.makedirs(save_to_disk_path, exist_ok=True) prompt_flattened = filename_regex.sub('_', metadata['prompt'])[:50] return os.path.join(save_to_disk_path, f"{prompt_flattened}_{get_image_id(i)}") for i, img_data in enumerate(images): img, seed, filtered = img_data img_path = get_image_basepath(i) if not filtered or show_only_filtered_image: img_metadata_path = img_path + '.txt' m = metadata.copy() m['seed'] = seed with open(img_metadata_path, 'w', encoding='utf-8') as f: f.write(m) img_path += '_filtered' if filtered else '' img_path += '.' + metadata['output_format'] img.save(img_path, quality=metadata['output_quality']) def construct_response(task_data: TaskData, images: list): return [ ResponseImage( data=image_utils.img_to_base64_str(img, task_data.output_format, task_data.output_quality), seed=seed ) for img, seed, _ in images ] def make_step_callback(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback, stream_image_progress: bool): n_steps = req.num_inference_steps if req.init_image is None else int(req.num_inference_steps * req.prompt_strength) last_callback_time = -1 def update_temp_img(x_samples, task_temp_images: list): partial_images = [] for i in range(req.num_outputs): img = image_utils.latent_to_img(thread_data, x_samples[i].unsqueeze(0)) buf = image_utils.img_to_buffer(img, output_format='JPEG') del img thread_data.temp_images[f"{task_data.request_id}/{i}"] = buf task_temp_images[i] = buf partial_images.append({'path': f"/image/tmp/{task_data.request_id}/{i}"}) return partial_images def on_image_step(x_samples, i): nonlocal last_callback_time thread_data.partial_x_samples = x_samples step_time = time.time() - last_callback_time if last_callback_time != -1 else -1 last_callback_time = time.time() progress = {"step": i, "step_time": step_time, "total_steps": n_steps} if stream_image_progress and i % 5 == 0: progress['output'] = update_temp_img(x_samples, task_temp_images) data_queue.put(json.dumps(progress)) step_callback() if thread_data.stop_processing: raise UserInitiatedStop("User requested that we stop processing") return on_image_step