"use strict" // Opt in to a restricted variant of JavaScript const EXT_REGEX = /(?:\.([^.]+))?$/ const TEXT_EXTENSIONS = ["txt", "json"] const IMAGE_EXTENSIONS = ["jpg", "jpeg", "png", "bmp", "tiff", "tif", "tga", "webp"] function parseBoolean(stringValue) { if (typeof stringValue === "boolean") { return stringValue } if (typeof stringValue === "number") { return stringValue !== 0 } if (typeof stringValue !== "string") { return false } switch (stringValue?.toLowerCase()?.trim()) { case "true": case "yes": case "on": case "1": return true case "false": case "no": case "off": case "0": case "none": case null: case undefined: return false } try { return Boolean(JSON.parse(stringValue)) } catch { return Boolean(stringValue) } } // keep in sync with `ui/easydiffusion/utils/save_utils.py` const TASK_MAPPING = { prompt: { name: "Prompt", setUI: (prompt) => { promptField.value = prompt }, readUI: () => promptField.value, parse: (val) => val, }, negative_prompt: { name: "Negative Prompt", setUI: (negative_prompt) => { negativePromptField.value = negative_prompt }, readUI: () => negativePromptField.value, parse: (val) => val, }, active_tags: { name: "Image Modifiers", setUI: (active_tags) => { refreshModifiersState(active_tags) }, readUI: () => activeTags.map((x) => x.name), parse: (val) => val, }, inactive_tags: { name: "Inactive Image Modifiers", setUI: (inactive_tags) => { refreshInactiveTags(inactive_tags) }, readUI: () => activeTags.filter((tag) => tag.inactive === true).map((x) => x.name), parse: (val) => val, }, width: { name: "Width", setUI: (width) => { const oldVal = widthField.value widthField.value = width if (!widthField.value) { widthField.value = oldVal } widthField.dispatchEvent(new Event("change")) }, readUI: () => parseInt(widthField.value), parse: (val) => parseInt(val), }, height: { name: "Height", setUI: (height) => { const oldVal = heightField.value heightField.value = height if (!heightField.value) { heightField.value = oldVal } heightField.dispatchEvent(new Event("change")) }, readUI: () => parseInt(heightField.value), parse: (val) => parseInt(val), }, seed: { name: "Seed", setUI: (seed) => { if (!seed) { randomSeedField.checked = true seedField.disabled = true seedField.value = 0 return } randomSeedField.checked = false randomSeedField.dispatchEvent(new Event("change")) // let plugins know that the state of the random seed toggle changed seedField.disabled = false seedField.value = seed }, readUI: () => parseInt(seedField.value), // just return the value the user is seeing in the UI parse: (val) => parseInt(val), }, num_inference_steps: { name: "Steps", setUI: (num_inference_steps) => { numInferenceStepsField.value = num_inference_steps }, readUI: () => parseInt(numInferenceStepsField.value), parse: (val) => parseInt(val), }, guidance_scale: { name: "Guidance Scale", setUI: (guidance_scale) => { guidanceScaleField.value = guidance_scale updateGuidanceScaleSlider() }, readUI: () => parseFloat(guidanceScaleField.value), parse: (val) => parseFloat(val), }, prompt_strength: { name: "Prompt Strength", setUI: (prompt_strength) => { promptStrengthField.value = prompt_strength updatePromptStrengthSlider() }, readUI: () => parseFloat(promptStrengthField.value), parse: (val) => parseFloat(val), }, init_image: { name: "Initial Image", setUI: (init_image) => { initImagePreview.src = init_image }, readUI: () => initImagePreview.src, parse: (val) => val, }, mask: { name: "Mask", setUI: (mask) => { setTimeout(() => { // add a delay to insure this happens AFTER the main image loads (which reloads the inpainter) imageInpainter.setImg(mask) }, 250) maskSetting.checked = Boolean(mask) }, readUI: () => (maskSetting.checked ? imageInpainter.getImg() : undefined), parse: (val) => val, }, preserve_init_image_color_profile: { name: "Preserve Color Profile", setUI: (preserve_init_image_color_profile) => { applyColorCorrectionField.checked = parseBoolean(preserve_init_image_color_profile) }, readUI: () => applyColorCorrectionField.checked, parse: (val) => parseBoolean(val), }, use_face_correction: { name: "Use Face Correction", setUI: (use_face_correction) => { const oldVal = gfpganModelField.value console.log("use face correction", use_face_correction) if (use_face_correction == null || use_face_correction == "None") { gfpganModelField.disabled = true useFaceCorrectionField.checked = false } else { gfpganModelField.value = getModelPath(use_face_correction, [".pth"]) if (gfpganModelField.value) { // Is a valid value for the field. useFaceCorrectionField.checked = true gfpganModelField.disabled = false } else { // Not a valid value, restore the old value and disable the filter. gfpganModelField.disabled = true gfpganModelField.value = oldVal useFaceCorrectionField.checked = false } } //useFaceCorrectionField.checked = parseBoolean(use_face_correction) }, readUI: () => (useFaceCorrectionField.checked ? gfpganModelField.value : undefined), parse: (val) => val, }, use_upscale: { name: "Use Upscaling", setUI: (use_upscale) => { const oldVal = upscaleModelField.value upscaleModelField.value = getModelPath(use_upscale, [".pth"]) if (upscaleModelField.value) { // Is a valid value for the field. useUpscalingField.checked = true upscaleModelField.disabled = false upscaleAmountField.disabled = false } else { // Not a valid value, restore the old value and disable the filter. upscaleModelField.disabled = true upscaleAmountField.disabled = true upscaleModelField.value = oldVal useUpscalingField.checked = false } }, readUI: () => (useUpscalingField.checked ? upscaleModelField.value : undefined), parse: (val) => val, }, upscale_amount: { name: "Upscale By", setUI: (upscale_amount) => { upscaleAmountField.value = upscale_amount }, readUI: () => upscaleAmountField.value, parse: (val) => val, }, latent_upscaler_steps: { name: "Latent Upscaler Steps", setUI: (latent_upscaler_steps) => { latentUpscalerStepsField.value = latent_upscaler_steps }, readUI: () => latentUpscalerStepsField.value, parse: (val) => val, }, sampler_name: { name: "Sampler", setUI: (sampler_name) => { samplerField.value = sampler_name }, readUI: () => samplerField.value, parse: (val) => val, }, use_stable_diffusion_model: { name: "Stable Diffusion model", setUI: (use_stable_diffusion_model) => { const oldVal = stableDiffusionModelField.value use_stable_diffusion_model = getModelPath(use_stable_diffusion_model, [".ckpt", ".safetensors"]) stableDiffusionModelField.value = use_stable_diffusion_model if (!stableDiffusionModelField.value) { stableDiffusionModelField.value = oldVal } }, readUI: () => stableDiffusionModelField.value, parse: (val) => val, }, clip_skip: { name: "Clip Skip", setUI: (value) => { clip_skip.checked = value }, readUI: () => clip_skip.checked, parse: (val) => Boolean(val), }, tiling: { name: "Tiling", setUI: (val) => { if (val === null || val === "None") { tilingField.value = "none" } else { tilingField.value = val } }, readUI: () => tilingField.value, parse: (val) => val, }, use_vae_model: { name: "VAE model", setUI: (use_vae_model) => { const oldVal = vaeModelField.value use_vae_model = use_vae_model === undefined || use_vae_model === null || use_vae_model === "None" ? "" : use_vae_model if (use_vae_model !== "") { use_vae_model = getModelPath(use_vae_model, [".vae.pt", ".ckpt"]) use_vae_model = use_vae_model !== "" ? use_vae_model : oldVal } vaeModelField.value = use_vae_model }, readUI: () => vaeModelField.value, parse: (val) => val, }, use_controlnet_model: { name: "ControlNet model", setUI: (use_controlnet_model) => { controlnetModelField.value = getModelPath(use_controlnet_model, [".pth", ".safetensors"]) }, readUI: () => controlnetModelField.value, parse: (val) => val, }, control_filter_to_apply: { name: "ControlNet Filter", setUI: (control_filter_to_apply) => { controlImageFilterField.value = control_filter_to_apply }, readUI: () => controlImageFilterField.value, parse: (val) => val, }, use_lora_model: { name: "LoRA model", setUI: (use_lora_model) => { let modelPaths = [] use_lora_model = Array.isArray(use_lora_model) ? use_lora_model : [use_lora_model] use_lora_model.forEach((m) => { if (m.includes("models\\lora\\")) { m = m.split("models\\lora\\")[1] } else if (m.includes("models\\\\lora\\\\")) { m = m.split("models\\\\lora\\\\")[1] } else if (m.includes("models/lora/")) { m = m.split("models/lora/")[1] } m = m.replaceAll("\\\\", "/") m = getModelPath(m, [".ckpt", ".safetensors"]) modelPaths.push(m) }) loraModelField.modelNames = modelPaths }, readUI: () => { return loraModelField.modelNames }, parse: (val) => { val = !val || val === "None" ? "" : val if (typeof val === "string" && val.includes(",")) { val = val.split(",") val = val.map((v) => v.trim()) val = val.map((v) => v.replaceAll("\\", "\\\\")) val = val.map((v) => v.replaceAll('"', "")) val = val.map((v) => v.replaceAll("'", "")) val = val.map((v) => '"' + v + '"') val = "[" + val + "]" val = JSON.parse(val) } val = Array.isArray(val) ? val : [val] return val }, }, lora_alpha: { name: "LoRA Strength", setUI: (lora_alpha) => { lora_alpha = Array.isArray(lora_alpha) ? lora_alpha : [lora_alpha] loraModelField.modelWeights = lora_alpha }, readUI: () => { return loraModelField.modelWeights }, parse: (val) => { if (typeof val === "string" && val.includes(",")) { val = "[" + val.replaceAll("'", '"') + "]" val = JSON.parse(val) } val = Array.isArray(val) ? val : [val] val = val.map((e) => parseFloat(e)) return val }, }, use_hypernetwork_model: { name: "Hypernetwork model", setUI: (use_hypernetwork_model) => { const oldVal = hypernetworkModelField.value use_hypernetwork_model = use_hypernetwork_model === undefined || use_hypernetwork_model === null || use_hypernetwork_model === "None" ? "" : use_hypernetwork_model if (use_hypernetwork_model !== "") { use_hypernetwork_model = getModelPath(use_hypernetwork_model, [".pt"]) use_hypernetwork_model = use_hypernetwork_model !== "" ? use_hypernetwork_model : oldVal } hypernetworkModelField.value = use_hypernetwork_model hypernetworkModelField.dispatchEvent(new Event("change")) }, readUI: () => hypernetworkModelField.value, parse: (val) => val, }, hypernetwork_strength: { name: "Hypernetwork Strength", setUI: (hypernetwork_strength) => { hypernetworkStrengthField.value = hypernetwork_strength updateHypernetworkStrengthSlider() }, readUI: () => parseFloat(hypernetworkStrengthField.value), parse: (val) => parseFloat(val), }, num_outputs: { name: "Parallel Images", setUI: (num_outputs) => { numOutputsParallelField.value = num_outputs }, readUI: () => parseInt(numOutputsParallelField.value), parse: (val) => val, }, use_cpu: { name: "Use CPU", setUI: (use_cpu) => { useCPUField.checked = use_cpu }, readUI: () => useCPUField.checked, parse: (val) => val, }, stream_image_progress: { name: "Stream Image Progress", setUI: (stream_image_progress) => { streamImageProgressField.checked = parseInt(numOutputsTotalField.value) > 50 ? false : stream_image_progress }, readUI: () => streamImageProgressField.checked, parse: (val) => Boolean(val), }, show_only_filtered_image: { name: "Show only the corrected/upscaled image", setUI: (show_only_filtered_image) => { showOnlyFilteredImageField.checked = show_only_filtered_image }, readUI: () => showOnlyFilteredImageField.checked, parse: (val) => Boolean(val), }, output_format: { name: "Output Format", setUI: (output_format) => { outputFormatField.value = output_format }, readUI: () => outputFormatField.value, parse: (val) => val, }, save_to_disk_path: { name: "Save to disk path", setUI: (save_to_disk_path) => { saveToDiskField.checked = Boolean(save_to_disk_path) diskPathField.value = save_to_disk_path }, readUI: () => diskPathField.value, parse: (val) => val, }, } function restoreTaskToUI(task, fieldsToSkip) { fieldsToSkip = fieldsToSkip || [] if ("numOutputsTotal" in task) { numOutputsTotalField.value = task.numOutputsTotal } if ("seed" in task) { randomSeedField.checked = false seedField.value = task.seed } if (!("reqBody" in task)) { return } for (const key in TASK_MAPPING) { if (key in task.reqBody && !fieldsToSkip.includes(key)) { TASK_MAPPING[key].setUI(task.reqBody[key]) } } // properly reset fields not present in the task if (!("use_hypernetwork_model" in task.reqBody)) { hypernetworkModelField.value = "" hypernetworkModelField.dispatchEvent(new Event("change")) } if (!("use_lora_model" in task.reqBody)) { loraModelField.modelNames = [] loraModelField.modelWeights = [] } // restore the original prompt if provided (e.g. use settings), fallback to prompt as needed (e.g. copy/paste or d&d) promptField.value = task.reqBody.original_prompt if (!("original_prompt" in task.reqBody)) { promptField.value = task.reqBody.prompt } promptField.dispatchEvent(new Event("input")) // properly reset checkboxes if (!("use_face_correction" in task.reqBody)) { useFaceCorrectionField.checked = false gfpganModelField.disabled = true } if (!("use_upscale" in task.reqBody)) { useUpscalingField.checked = false } if (!("mask" in task.reqBody) && maskSetting.checked) { maskSetting.checked = false maskSetting.dispatchEvent(new Event("click")) } upscaleModelField.disabled = !useUpscalingField.checked upscaleAmountField.disabled = !useUpscalingField.checked // hide/show source picture as needed if (IMAGE_REGEX.test(initImagePreview.src) && task.reqBody.init_image == undefined) { // hide source image initImageClearBtn.dispatchEvent(new Event("click")) } else if (task.reqBody.init_image !== undefined) { // listen for inpainter loading event, which happens AFTER the main image loads (which reloads the inpainter) initImagePreview.addEventListener( "load", function() { if (Boolean(task.reqBody.mask)) { imageInpainter.setImg(task.reqBody.mask) maskSetting.checked = true } }, { once: true } ) initImagePreview.src = task.reqBody.init_image } // hide/show controlnet picture as needed if (IMAGE_REGEX.test(controlImagePreview.src) && task.reqBody.control_image == undefined) { // hide source image controlImageClearBtn.dispatchEvent(new Event("click")) } else if (task.reqBody.control_image !== undefined) { // listen for inpainter loading event, which happens AFTER the main image loads (which reloads the inpai controlImagePreview.src = task.reqBody.control_image } } function readUI() { const reqBody = {} for (const key in TASK_MAPPING) { if (testDiffusers.checked && (key === "use_hypernetwork_model" || key === "hypernetwork_strength")) { continue } reqBody[key] = TASK_MAPPING[key].readUI() } return { numOutputsTotal: parseInt(numOutputsTotalField.value), seed: TASK_MAPPING["seed"].readUI(), reqBody: reqBody, } } function getModelPath(filename, extensions) { if (typeof filename !== "string") { return } let pathIdx if (filename.includes("/models/stable-diffusion/")) { pathIdx = filename.indexOf("/models/stable-diffusion/") + 25 // Linux, Mac paths } else if (filename.includes("\\models\\stable-diffusion\\")) { pathIdx = filename.indexOf("\\models\\stable-diffusion\\") + 25 // Linux, Mac paths } if (pathIdx >= 0) { filename = filename.slice(pathIdx) } extensions.forEach((ext) => { if (filename.endsWith(ext)) { filename = filename.slice(0, filename.length - ext.length) } }) return filename } const TASK_TEXT_MAPPING = { prompt: "Prompt", width: "Width", height: "Height", seed: "Seed", num_inference_steps: "Steps", guidance_scale: "Guidance Scale", prompt_strength: "Prompt Strength", use_face_correction: "Use Face Correction", use_upscale: "Use Upscaling", upscale_amount: "Upscale By", sampler_name: "Sampler", negative_prompt: "Negative Prompt", use_stable_diffusion_model: "Stable Diffusion model", use_hypernetwork_model: "Hypernetwork model", hypernetwork_strength: "Hypernetwork Strength", use_lora_model: "LoRA model", lora_alpha: "LoRA Strength", use_controlnet_model: "ControlNet model", control_filter_to_apply: "ControlNet Filter", tiling: "Seamless Tiling", } function parseTaskFromText(str) { const taskReqBody = {} const lines = str.split("\n") if (lines.length === 0) { return } // Prompt let knownKeyOnFirstLine = false for (let key in TASK_TEXT_MAPPING) { if (lines[0].startsWith(TASK_TEXT_MAPPING[key] + ":")) { knownKeyOnFirstLine = true break } } if (!knownKeyOnFirstLine) { taskReqBody.prompt = lines[0] console.log("Prompt:", taskReqBody.prompt) } for (const key in TASK_TEXT_MAPPING) { if (key in taskReqBody) { continue } const name = TASK_TEXT_MAPPING[key] let val = undefined const reName = new RegExp(`${name}\\ *:\\ *(.*)(?:\\r\\n|\\r|\\n)*`, "igm") const match = reName.exec(str) if (match) { str = str.slice(0, match.index) + str.slice(match.index + match[0].length) val = match[1] } if (val !== undefined) { taskReqBody[key] = TASK_MAPPING[key].parse(val.trim()) console.log(TASK_MAPPING[key].name + ":", taskReqBody[key]) if (!str) { break } } } if (Object.keys(taskReqBody).length <= 0) { return undefined } const task = { reqBody: taskReqBody } if ("seed" in taskReqBody) { task.seed = taskReqBody.seed } return task } async function parseContent(text) { text = text.trim() if (text.startsWith("{") && text.endsWith("}")) { try { const task = JSON.parse(text) if (!("reqBody" in task)) { // support the format saved to the disk, by the UI task.reqBody = Object.assign({}, task) } restoreTaskToUI(task) return true } catch (e) { console.warn(`JSON text content couldn't be parsed.`, e) } return false } // Normal txt file. const task = parseTaskFromText(text) if (text.toLowerCase().includes("seed:") && task) { // only parse valid task content restoreTaskToUI(task) return true } else { console.warn(`Raw text content couldn't be parsed.`) promptField.value = text return false } } async function readFile(file, i) { console.log(`Event %o reading file[${i}]:${file.name}...`) const fileContent = (await file.text()).trim() return await parseContent(fileContent) } function dropHandler(ev) { console.log("Content dropped...") let items = [] if (ev?.dataTransfer?.items) { // Use DataTransferItemList interface items = Array.from(ev.dataTransfer.items) items = items.filter((item) => item.kind === "file") items = items.map((item) => item.getAsFile()) } else if (ev?.dataTransfer?.files) { // Use DataTransfer interface items = Array.from(ev.dataTransfer.files) } items.forEach((item) => { item.file_ext = EXT_REGEX.exec(item.name.toLowerCase())[1] }) let text_items = items.filter((item) => TEXT_EXTENSIONS.includes(item.file_ext)) let image_items = items.filter((item) => IMAGE_EXTENSIONS.includes(item.file_ext)) if (image_items.length > 0 && ev.target == initImageSelector) { return // let the event bubble up, so that the Init Image filepicker can receive this } ev.preventDefault() // Prevent default behavior (Prevent file/content from being opened) text_items.forEach(readFile) } function dragOverHandler(ev) { console.log("Content in drop zone") // Prevent default behavior (Prevent file/content from being opened) ev.preventDefault() ev.dataTransfer.dropEffect = "copy" let img = new Image() img.src = "//" + location.host + "/media/images/favicon-32x32.png" ev.dataTransfer.setDragImage(img, 16, 16) } document.addEventListener("drop", dropHandler) document.addEventListener("dragover", dragOverHandler) const TASK_REQ_NO_EXPORT = ["use_cpu", "save_to_disk_path"] const resetSettings = document.getElementById("reset-image-settings") function checkReadTextClipboardPermission(result) { if (result.state != "granted" && result.state != "prompt") { return } // PASTE ICON const pasteIcon = document.createElement("i") pasteIcon.className = "fa-solid fa-paste section-button" pasteIcon.innerHTML = `Paste Image Settings` pasteIcon.addEventListener("click", async (event) => { event.stopPropagation() // Add css class 'active' pasteIcon.classList.add("active") // In 350 ms remove the 'active' class asyncDelay(350).then(() => pasteIcon.classList.remove("active")) // Retrieve clipboard content and try to parse it const text = await navigator.clipboard.readText() await parseContent(text) }) resetSettings.parentNode.insertBefore(pasteIcon, resetSettings) } navigator.permissions .query({ name: "clipboard-read" }) .then(checkReadTextClipboardPermission, (reason) => console.log("clipboard-read is not available. %o", reason)) document.addEventListener("paste", async (event) => { if (event.target) { const targetTag = event.target.tagName.toLowerCase() // Disable when targeting input elements. if (targetTag === "input" || targetTag === "textarea") { return } } const paste = (event.clipboardData || window.clipboardData).getData("text") const selection = window.getSelection() if (paste != "" && selection.toString().trim().length <= 0 && (await parseContent(paste))) { event.preventDefault() return } }) // Adds a copy and a paste icon if the browser grants permission to write to clipboard. function checkWriteToClipboardPermission(result) { if (result.state != "granted" && result.state != "prompt") { return } // COPY ICON const copyIcon = document.createElement("i") copyIcon.className = "fa-solid fa-clipboard section-button" copyIcon.innerHTML = `Copy Image Settings` copyIcon.addEventListener("click", (event) => { event.stopPropagation() // Add css class 'active' copyIcon.classList.add("active") // In 350 ms remove the 'active' class asyncDelay(350).then(() => copyIcon.classList.remove("active")) const uiState = readUI() TASK_REQ_NO_EXPORT.forEach((key) => delete uiState.reqBody[key]) if (uiState.reqBody.init_image && !IMAGE_REGEX.test(uiState.reqBody.init_image)) { delete uiState.reqBody.init_image delete uiState.reqBody.prompt_strength } navigator.clipboard.writeText(JSON.stringify(uiState, undefined, 4)) }) resetSettings.parentNode.insertBefore(copyIcon, resetSettings) } // Determine which access we have to the clipboard. Clipboard access is only available on localhost or via TLS. navigator.permissions.query({ name: "clipboard-write" }).then(checkWriteToClipboardPermission, (e) => { if (e instanceof TypeError && typeof navigator?.clipboard?.writeText === "function") { // Fix for firefox https://bugzilla.mozilla.org/show_bug.cgi?id=1560373 checkWriteToClipboardPermission({ state: "granted" }) } })