import json import os, re import traceback import torch import numpy as np from omegaconf import OmegaConf from PIL import Image, ImageOps from tqdm import tqdm, trange from itertools import islice from einops import rearrange import time from pytorch_lightning import seed_everything from torch import autocast from contextlib import nullcontext from einops import rearrange, repeat from ldm.util import instantiate_from_config from optimizedSD.optimUtils import split_weighted_subprompts from transformers import logging from gfpgan import GFPGANer from basicsr.archs.rrdbnet_arch import RRDBNet from realesrgan import RealESRGANer import uuid logging.set_verbosity_error() # consts config_yaml = "optimizedSD/v1-inference.yaml" filename_regex = re.compile('[^a-zA-Z0-9]') # api stuff from . import Request, Response, Image as ResponseImage import base64 from io import BytesIO #from colorama import Fore from threading import local as LocalThreadVars thread_data = LocalThreadVars() def device_would_fail(device): if device == 'cpu': return None # Returns None when no issues found, otherwise returns the detected error str. # Memory check try: mem_free, mem_total = torch.cuda.mem_get_info(device) mem_total /= float(10**9) if mem_total < 3.0: return 'GPUs with less than 3 GB of VRAM are not compatible with Stable Diffusion' except RuntimeError as e: return str(e) # Return cuda errors from mem_get_info as strings return None def device_select(device): if device == 'cpu': return True if not torch.cuda.is_available(): return False failure_msg = device_would_fail(device) if failure_msg: if 'invalid device' in failure_msg: raise NameError(f'GPU "{device}" could not be found. Remove this device from config.render_devices or use one of "auto" or "cuda".') print(failure_msg) return False device_name = torch.cuda.get_device_name(device) # otherwise these NVIDIA cards create green images thread_data.force_full_precision = ('nvidia' in device_name.lower() or 'geforce' in device_name.lower()) and (' 1660' in device_name or ' 1650' in device_name) if thread_data.force_full_precision: print('forcing full precision on NVIDIA 16xx cards, to avoid green images. GPU detected: ', gpu_name) thread_data.device = device thread_data.has_valid_gpu = True return True def device_init(device_selection=None): # Thread bound properties thread_data.stop_processing = False thread_data.temp_images = {} thread_data.ckpt_file = None thread_data.gfpgan_file = None thread_data.real_esrgan_file = None thread_data.model = None thread_data.modelCS = None thread_data.modelFS = None thread_data.model_gfpgan = None thread_data.model_real_esrgan = None thread_data.model_is_half = False thread_data.model_fs_is_half = False thread_data.device = None thread_data.unet_bs = 1 thread_data.precision = 'autocast' thread_data.sampler_plms = None thread_data.sampler_ddim = None thread_data.turbo = False thread_data.has_valid_gpu = False thread_data.force_full_precision = False if device_selection.lower() == 'cpu': print('CPU requested, skipping gpu init.') thread_data.device = 'cpu' return if not torch.cuda.is_available(): print('WARNING: torch.cuda is not available. Using the CPU, but this will be very slow!') return device_count = torch.cuda.device_count() if device_count <= 1 and device_selection == 'auto': device_selection = 'current' # Use 'auto' only when there is more than one compatible device found. if device_selection == 'auto': print('Autoselecting GPU. Using most free memory.') max_mem_free = 0 best_device = None for device in range(device_count): mem_free, mem_total = torch.cuda.mem_get_info(device) mem_free /= float(10**9) mem_total /= float(10**9) device_name = torch.cuda.get_device_name(device) print(f'GPU:{device} detected: {device_name} - Memory: {round(mem_total - mem_free, 2)}Go / {round(mem_total, 2)}Go') if max_mem_free < mem_free: max_mem_free = mem_free best_device = device if best_device and device_select(device): print(f'Setting GPU:{device} as active') torch.cuda.device(device) return if isinstance(device_selection, str): device_selection = device_selection.lower() if device_selection.startswith('gpu:'): device_selection = int(device_selection[4:]) if device_selection != 'current' and device_selection != 'gpu': if device_select(device_selection): if isinstance(device_selection, int): print(f'Setting GPU:{device_selection} as active') else: print(f'Setting {device_selection} as active') torch.cuda.device(device_selection) return # By default use current device. print('Checking current GPU...') device = torch.cuda.current_device() device_name = torch.cuda.get_device_name(device) print(f'GPU:{device} detected: {device_name}') if device_select(device): return print('WARNING: No compatible GPU found. Using the CPU, but this will be very slow!') thread_data.device = 'cpu' def is_first_cuda_device(device): if device is None: return False if device == 0 or device == '0': return True if device == 'cuda' or device == 'cuda:0': return True if device == 'gpu' or device == 'gpu:0': return True if device == 'current': return True if device == torch.device(0): return True return False def load_model_ckpt(): if not thread_data.ckpt_file: raise ValueError(f'Thread ckpt_file is undefined.') if not os.path.exists(thread_data.ckpt_file + '.ckpt'): raise FileNotFoundError(f'Cannot find {thread_data.ckpt_file}.ckpt') if not thread_data.precision: thread_data.precision = 'full' if thread_data.force_full_precision else 'autocast' if not thread_data.unet_bs: thread_data.unet_bs = 1 unload_model() if thread_data.device == 'cpu': thread_data.precision = 'full' print('loading', thread_data.ckpt_file, 'to', thread_data.device, 'using precision', thread_data.precision) sd = load_model_from_config(thread_data.ckpt_file + '.ckpt') li, lo = [], [] for key, value in sd.items(): sp = key.split(".") if (sp[0]) == "model": if "input_blocks" in sp: li.append(key) elif "middle_block" in sp: li.append(key) elif "time_embed" in sp: li.append(key) else: lo.append(key) for key in li: sd["model1." + key[6:]] = sd.pop(key) for key in lo: sd["model2." + key[6:]] = sd.pop(key) config = OmegaConf.load(f"{config_yaml}") model = instantiate_from_config(config.modelUNet) _, _ = model.load_state_dict(sd, strict=False) model.eval() model.cdevice = torch.device(thread_data.device) model.unet_bs = thread_data.unet_bs model.turbo = thread_data.turbo if thread_data.device != 'cpu': model.to(thread_data.device) thread_data.model = model modelCS = instantiate_from_config(config.modelCondStage) _, _ = modelCS.load_state_dict(sd, strict=False) modelCS.eval() modelCS.cond_stage_model.device = torch.device(thread_data.device) if thread_data.device != 'cpu': modelCS.to(thread_data.device) thread_data.modelCS = modelCS modelFS = instantiate_from_config(config.modelFirstStage) _, _ = modelFS.load_state_dict(sd, strict=False) modelFS.eval() if thread_data.device != 'cpu': modelFS.to(thread_data.device) thread_data.modelFS = modelFS del sd if thread_data.device != "cpu" and thread_data.precision == "autocast": thread_data.model.half() thread_data.modelCS.half() thread_data.modelFS.half() thread_data.model_is_half = True thread_data.model_fs_is_half = True else: thread_data.model_is_half = False thread_data.model_fs_is_half = False print('loaded', thread_data.ckpt_file, 'as', model.device, '->', modelCS.cond_stage_model.device, '->', thread_data.modelFS.device, 'using precision', thread_data.precision) def unload_model(): if thread_data.model is not None: print('Unloading models...') del thread_data.model del thread_data.modelCS del thread_data.modelFS thread_data.model = None thread_data.modelCS = None thread_data.modelFS = None def load_model_gfpgan(): if thread_data.gfpgan_file is None: print('load_model_gfpgan called without setting gfpgan_file') return if thread_data.device != 'cpu' and not is_first_cuda_device(thread_data.device): #TODO Remove when fixed - A bug with GFPGANer and facexlib needs to be fixed before use on other devices. raise Exception(f'Current device {torch.device(thread_data.device)} is not {torch.device(0)}.') model_path = thread_data.gfpgan_file + ".pth" thread_data.model_gfpgan = GFPGANer(device=torch.device(thread_data.device), model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None) print('loaded', thread_data.gfpgan_file, 'to', thread_data.model_gfpgan.device, 'precision', thread_data.precision) def load_model_real_esrgan(): if thread_data.real_esrgan_file is None: print('load_model_real_esrgan called without setting real_esrgan_file') return model_path = thread_data.real_esrgan_file + ".pth" RealESRGAN_models = { 'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4), 'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) } model_to_use = RealESRGAN_models[thread_data.real_esrgan_file] if thread_data.device == 'cpu': thread_data.model_real_esrgan = RealESRGANer(device=torch.device(thread_data.device), scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=False) # cpu does not support half #thread_data.model_real_esrgan.device = torch.device(thread_data.device) thread_data.model_real_esrgan.model.to('cpu') else: thread_data.model_real_esrgan = RealESRGANer(device=torch.device(thread_data.device), scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=thread_data.model_is_half) thread_data.model_real_esrgan.model.name = thread_data.real_esrgan_file print('loaded ', thread_data.real_esrgan_file, 'to', thread_data.model_real_esrgan.device, 'precision', thread_data.precision) def get_base_path(disk_path, session_id, prompt, img_id, ext, suffix=None): if disk_path is None: return None if session_id is None: return None if ext is None: raise Exception('Missing ext') session_out_path = os.path.join(disk_path, session_id) os.makedirs(session_out_path, exist_ok=True) prompt_flattened = filename_regex.sub('_', prompt)[:50] if suffix is not None: return os.path.join(session_out_path, f"{prompt_flattened}_{img_id}_{suffix}.{ext}") return os.path.join(session_out_path, f"{prompt_flattened}_{img_id}.{ext}") def apply_filters(filter_name, image_data): print(f'Applying filter {filter_name}...') if isinstance(image_data, torch.Tensor): print(image_data) image_data.to(thread_data.device) gc() if filter_name == 'gfpgan': if thread_data.model_gfpgan is None: raise Exception('Model "gfpgan" not loaded.') print('enhance with', thread_data.gfpgan_file, 'on', thread_data.model_gfpgan.device, 'precision', thread_data.precision) _, _, output = thread_data.model_gfpgan.enhance(image_data[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True) image_data = output[:,:,::-1] if filter_name == 'real_esrgan': if thread_data.model_real_esrgan is None: raise Exception('Model "gfpgan" not loaded.') print('enhance with', thread_data.real_esrgan_file, 'on', thread_data.model_real_esrgan.device, 'precision', thread_data.precision) output, _ = thread_data.model_real_esrgan.enhance(image_data[:,:,::-1]) image_data = output[:,:,::-1] return image_data def mk_img(req: Request): try: yield from do_mk_img(req) except Exception as e: print(traceback.format_exc()) gc() if thread_data.device != "cpu": thread_data.modelFS.to("cpu") thread_data.modelCS.to("cpu") thread_data.model.model1.to("cpu") thread_data.model.model2.to("cpu") gc() yield json.dumps({ "status": 'failed', "detail": str(e) }) def do_mk_img(req: Request): thread_data.stop_processing = False res = Response() res.request = req res.images = [] thread_data.temp_images.clear() # custom model support: # the req.use_stable_diffusion_model needs to be a valid path # to the ckpt file (without the extension). if not os.path.exists(req.use_stable_diffusion_model + '.ckpt'): raise FileNotFoundError(f'Cannot find {req.use_stable_diffusion_model}.ckpt') needs_model_reload = False if thread_data.ckpt_file != req.use_stable_diffusion_model: thread_data.ckpt_file = req.use_stable_diffusion_model needs_model_reload = True if req.use_cpu: if thread_data.device != 'cpu': thread_data.device = 'cpu' if thread_data.model_is_half: load_model_ckpt() needs_model_reload = False load_model_gfpgan() load_model_real_esrgan() else: if thread_data.has_valid_gpu: if (thread_data.precision == 'autocast' and (req.use_full_precision or not thread_data.model_is_half)) or \ (thread_data.precision == 'full' and not req.use_full_precision and not thread_data.force_full_precision): thread_data.precision = 'full' if req.use_full_precision else 'autocast' load_model_ckpt() load_model_gfpgan() load_model_real_esrgan() needs_model_reload = False if needs_model_reload: load_model_ckpt() if req.use_face_correction != thread_data.gfpgan_file: thread_data.gfpgan_file = req.use_face_correction load_model_gfpgan() if req.use_upscale != thread_data.real_esrgan_file: thread_data.real_esrgan_file = req.use_upscale load_model_real_esrgan() if thread_data.turbo != req.turbo: thread_data.turbo = req.turbo thread_data.model.turbo = req.turbo opt_prompt = req.prompt opt_seed = req.seed opt_n_iter = 1 opt_C = 4 opt_f = 8 opt_ddim_eta = 0.0 opt_init_img = req.init_image img_id = base64.b64encode(int(time.time()).to_bytes(8, 'big')).decode() # Generate unique ID based on time. img_id = img_id.translate({43:None, 47:None, 61:None})[-8:] # Remove + / = and keep last 8 chars. print(req.to_string(), '\n device', thread_data.device) print('\n\n Using precision:', thread_data.precision) seed_everything(opt_seed) batch_size = req.num_outputs prompt = opt_prompt assert prompt is not None data = [batch_size * [prompt]] if thread_data.precision == "autocast" and thread_data.device != "cpu": precision_scope = autocast else: precision_scope = nullcontext mask = None if req.init_image is None: handler = _txt2img init_latent = None t_enc = None else: handler = _img2img init_image = load_img(req.init_image, req.width, req.height) init_image = init_image.to(thread_data.device) if thread_data.device != "cpu" and thread_data.precision == "autocast": init_image = init_image.half() thread_data.modelFS.to(thread_data.device) init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) init_latent = thread_data.modelFS.get_first_stage_encoding(thread_data.modelFS.encode_first_stage(init_image)) # move to latent space if req.mask is not None: mask = load_mask(req.mask, req.width, req.height, init_latent.shape[2], init_latent.shape[3], True).to(thread_data.device) mask = mask[0][0].unsqueeze(0).repeat(4, 1, 1).unsqueeze(0) mask = repeat(mask, '1 ... -> b ...', b=batch_size) if thread_data.device != "cpu" and thread_data.precision == "autocast": mask = mask.half() move_fs_to_cpu() assert 0. <= req.prompt_strength <= 1., 'can only work with strength in [0.0, 1.0]' t_enc = int(req.prompt_strength * req.num_inference_steps) print(f"target t_enc is {t_enc} steps") if req.save_to_disk_path is not None: session_out_path = os.path.join(req.save_to_disk_path, req.session_id) os.makedirs(session_out_path, exist_ok=True) else: session_out_path = None seeds = "" with torch.no_grad(): for n in trange(opt_n_iter, desc="Sampling"): for prompts in tqdm(data, desc="data"): with precision_scope("cuda"): thread_data.modelCS.to(thread_data.device) uc = None if req.guidance_scale != 1.0: uc = thread_data.modelCS.get_learned_conditioning(batch_size * [req.negative_prompt]) if isinstance(prompts, tuple): prompts = list(prompts) subprompts, weights = split_weighted_subprompts(prompts[0]) if len(subprompts) > 1: c = torch.zeros_like(uc) totalWeight = sum(weights) # normalize each "sub prompt" and add it for i in range(len(subprompts)): weight = weights[i] # if not skip_normalize: weight = weight / totalWeight c = torch.add(c, thread_data.modelCS.get_learned_conditioning(subprompts[i]), alpha=weight) else: c = thread_data.modelCS.get_learned_conditioning(prompts) thread_data.modelFS.to(thread_data.device) partial_x_samples = None def img_callback(x_samples, i): nonlocal partial_x_samples partial_x_samples = x_samples if req.stream_progress_updates: n_steps = req.num_inference_steps if req.init_image is None else t_enc progress = {"step": i, "total_steps": n_steps} if req.stream_image_progress and i % 5 == 0: partial_images = [] for i in range(batch_size): x_samples_ddim = thread_data.modelFS.decode_first_stage(x_samples[i].unsqueeze(0)) x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c") x_sample = x_sample.astype(np.uint8) img = Image.fromarray(x_sample) buf = BytesIO() img.save(buf, format='JPEG') buf.seek(0) del img, x_sample, x_samples_ddim # don't delete x_samples, it is used in the code that called this callback thread_data.temp_images[str(req.session_id) + '/' + str(i)] = buf partial_images.append({'path': f'/image/tmp/{req.session_id}/{i}'}) progress['output'] = partial_images yield json.dumps(progress) if thread_data.stop_processing: raise UserInitiatedStop("User requested that we stop processing") # run the handler try: print('Running handler...') if handler == _txt2img: x_samples = _txt2img(req.width, req.height, req.num_outputs, req.num_inference_steps, req.guidance_scale, None, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, req.sampler) else: x_samples = _img2img(init_latent, t_enc, batch_size, req.guidance_scale, c, uc, req.num_inference_steps, opt_ddim_eta, opt_seed, img_callback, mask) yield from x_samples x_samples = partial_x_samples except UserInitiatedStop: if partial_x_samples is None: continue x_samples = partial_x_samples print("saving images") for i in range(batch_size): x_samples_ddim = thread_data.modelFS.decode_first_stage(x_samples[i].unsqueeze(0)) x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c") x_sample = x_sample.astype(np.uint8) img = Image.fromarray(x_sample) has_filters = (req.use_face_correction is not None and req.use_face_correction.startswith('GFPGAN')) or \ (req.use_upscale is not None and req.use_upscale.startswith('RealESRGAN')) return_orig_img = not has_filters or not req.show_only_filtered_image if thread_data.stop_processing: return_orig_img = True if req.save_to_disk_path is not None: if return_orig_img: img_out_path = get_base_path(req.save_to_disk_path, req.session_id, prompts[0], img_id, req.output_format) save_image(img, img_out_path) meta_out_path = get_base_path(req.save_to_disk_path, req.session_id, prompts[0], img_id, 'txt') save_metadata(meta_out_path, req, prompts[0], opt_seed) if return_orig_img: img_data = img_to_base64_str(img, req.output_format) res_image_orig = ResponseImage(data=img_data, seed=opt_seed) res.images.append(res_image_orig) if req.save_to_disk_path is not None: res_image_orig.path_abs = img_out_path del img if has_filters and not thread_data.stop_processing: filters_applied = [] if req.use_face_correction: x_sample = apply_filters('gfpgan', x_sample) filters_applied.append(req.use_face_correction) if req.use_upscale: x_sample = apply_filters('real_esrgan', x_sample) filters_applied.append(req.use_upscale) if (len(filters_applied) > 0): filtered_image = Image.fromarray(x_sample) filtered_img_data = img_to_base64_str(filtered_image, req.output_format) response_image = ResponseImage(data=filtered_img_data, seed=req.seed) res.images.append(response_image) if req.save_to_disk_path is not None: filtered_img_out_path = get_base_path(req.save_to_disk_path, req.session_id, prompts[0], img_id, req.output_format, "_".join(filters_applied)) save_image(filtered_image, filtered_img_out_path) response_image.path_abs = filtered_img_out_path del filtered_image seeds += str(opt_seed) + "," opt_seed += 1 move_fs_to_cpu() gc() del x_samples, x_samples_ddim, x_sample print(f'memory_final = {round(torch.cuda.memory_allocated(thread_data.device) / 1e6, 2)}Mo') print('Task completed') yield json.dumps(res.json()) def save_image(img, img_out_path): try: img.save(img_out_path) except: print('could not save the file', traceback.format_exc()) def save_metadata(meta_out_path, req, prompt, opt_seed): metadata = f'''{prompt} Width: {req.width} Height: {req.height} Seed: {opt_seed} Steps: {req.num_inference_steps} Guidance Scale: {req.guidance_scale} Prompt Strength: {req.prompt_strength} Use Face Correction: {req.use_face_correction} Use Upscaling: {req.use_upscale} Sampler: {req.sampler} Negative Prompt: {req.negative_prompt} Stable Diffusion model: {req.use_stable_diffusion_model + '.ckpt'} ''' try: with open(meta_out_path, 'w') as f: f.write(metadata) except: print('could not save the file', traceback.format_exc()) def _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, start_code, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, sampler_name): shape = [opt_n_samples, opt_C, opt_H // opt_f, opt_W // opt_f] if thread_data.device != "cpu": mem = torch.cuda.memory_allocated(thread_data.device) / 1e6 print('Device:', thread_data.device, 'CS_Model, Memory transfer starting. Memory Used:', round(mem, 2), 'Mo') thread_data.modelCS.to("cpu") while torch.cuda.memory_allocated(thread_data.device) / 1e6 >= mem and mem > 0: print('Device:', thread_data.device, 'Waiting Memory transfer. Memory Used:', round(mem, 2), 'Mo') time.sleep(1) print('Transfered', round(mem - torch.cuda.memory_allocated(thread_data.device) / 1e6, 2), 'Mo') if sampler_name == 'ddim': thread_data.model.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False) samples_ddim = thread_data.model.sample( S=opt_ddim_steps, conditioning=c, seed=opt_seed, shape=shape, verbose=False, unconditional_guidance_scale=opt_scale, unconditional_conditioning=uc, eta=opt_ddim_eta, x_T=start_code, img_callback=img_callback, mask=mask, sampler = sampler_name, ) yield from samples_ddim def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask): # encode (scaled latent) z_enc = thread_data.model.stochastic_encode( init_latent, torch.tensor([t_enc] * batch_size).to(thread_data.device), opt_seed, opt_ddim_eta, opt_ddim_steps, ) x_T = None if mask is None else init_latent # decode it samples_ddim = thread_data.model.sample( t_enc, c, z_enc, unconditional_guidance_scale=opt_scale, unconditional_conditioning=uc, img_callback=img_callback, mask=mask, x_T=x_T, sampler = 'ddim' ) yield from samples_ddim def move_fs_to_cpu(): if thread_data.device != "cpu": mem = torch.cuda.memory_allocated(thread_data.device) / 1e6 print('Device:', thread_data.device, 'FS_Model, Memory transfer starting. Memory Used:', round(mem, 2), 'Mo') thread_data.modelFS.to("cpu") while torch.cuda.memory_allocated(thread_data.device) / 1e6 >= mem and mem > 0: print('Device:', thread_data.device, 'Waiting for Memory transfer. Memory Used:', round(mem, 2), 'Mo') time.sleep(1) print('Transfered', round(mem - torch.cuda.memory_allocated(thread_data.device) / 1e6, 2), 'Mo') def gc(): #gc.collect() if thread_data.device == 'cpu': return torch.cuda.empty_cache() torch.cuda.ipc_collect() # internal def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) def load_model_from_config(ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] return sd # utils class UserInitiatedStop(Exception): pass def load_img(img_str, w0, h0): image = base64_str_to_img(img_str).convert("RGB") w, h = image.size print(f"loaded input image of size ({w}, {h}) from base64") if h0 is not None and w0 is not None: h, w = h0, w0 w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64 image = image.resize((w, h), resample=Image.Resampling.LANCZOS) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) return 2.*image - 1. def load_mask(mask_str, h0, w0, newH, newW, invert=False): image = base64_str_to_img(mask_str).convert("RGB") w, h = image.size print(f"loaded input mask of size ({w}, {h})") if invert: print("inverted") image = ImageOps.invert(image) # where_0, where_1 = np.where(image == 0), np.where(image == 255) # image[where_0], image[where_1] = 255, 0 if h0 is not None and w0 is not None: h, w = h0, w0 w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64 print(f"New mask size ({w}, {h})") image = image.resize((newW, newH), resample=Image.Resampling.LANCZOS) image = np.array(image) image = image.astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) return image # https://stackoverflow.com/a/61114178 def img_to_base64_str(img, output_format="PNG"): buffered = BytesIO() img.save(buffered, format=output_format) buffered.seek(0) img_byte = buffered.getvalue() img_str = "data:image/png;base64," + base64.b64encode(img_byte).decode() return img_str def base64_str_to_img(img_str): img_str = img_str[len("data:image/png;base64,"):] data = base64.b64decode(img_str) buffered = BytesIO(data) img = Image.open(buffered) return img