import queue import time import json import pprint from easydiffusion import device_manager from easydiffusion.types import TaskData, Response, Image as ResponseImage, UserInitiatedStop, GenerateImageRequest from easydiffusion.utils import get_printable_request, save_images_to_disk, log from sdkit import Context from sdkit.generate import generate_images from sdkit.filter import apply_filters from sdkit.utils import img_to_buffer, img_to_base64_str, latent_samples_to_images, gc context = Context() # thread-local ''' runtime data (bound locally to this thread), for e.g. device, references to loaded models, optimization flags etc ''' def init(device): ''' Initializes the fields that will be bound to this runtime's context, and sets the current torch device ''' context.stop_processing = False context.temp_images = {} context.partial_x_samples = None device_manager.device_init(context, device) def make_images(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback): context.stop_processing = False print_task_info(req, task_data) images, seeds = make_images_internal(req, task_data, data_queue, task_temp_images, step_callback) res = Response(req, task_data, images=construct_response(images, seeds, task_data, base_seed=req.seed)) res = res.json() data_queue.put(json.dumps(res)) log.info('Task completed') return res def print_task_info(req: GenerateImageRequest, task_data: TaskData): req_str = pprint.pformat(get_printable_request(req)).replace("[","\[") task_str = pprint.pformat(task_data.dict()).replace("[","\[") log.info(f'request: {req_str}') log.info(f'task data: {task_str}') def make_images_internal(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback): images, user_stopped = generate_images_internal(req, task_data, data_queue, task_temp_images, step_callback, task_data.stream_image_progress) filtered_images = filter_images(task_data, images, user_stopped) if task_data.save_to_disk_path is not None: save_images_to_disk(images, filtered_images, req, task_data) seeds = [*range(req.seed, req.seed + len(images))] if task_data.show_only_filtered_image or filtered_images is images: return filtered_images, seeds else: return images + filtered_images, seeds + seeds def generate_images_internal(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback, stream_image_progress: bool): context.temp_images.clear() callback = make_step_callback(req, task_data, data_queue, task_temp_images, step_callback, stream_image_progress) try: images = generate_images(context, callback=callback, **req.dict()) user_stopped = False except UserInitiatedStop: images = [] user_stopped = True if context.partial_x_samples is not None: images = latent_samples_to_images(context, context.partial_x_samples) finally: if hasattr(context, 'partial_x_samples') and context.partial_x_samples is not None: del context.partial_x_samples context.partial_x_samples = None return images, user_stopped def filter_images(task_data: TaskData, images: list, user_stopped): if user_stopped or (task_data.use_face_correction is None and task_data.use_upscale is None): return images filters_to_apply = [] if task_data.use_face_correction and 'gfpgan' in task_data.use_face_correction.lower(): filters_to_apply.append('gfpgan') if task_data.use_upscale and 'realesrgan' in task_data.use_upscale.lower(): filters_to_apply.append('realesrgan') return apply_filters(context, filters_to_apply, images, scale=task_data.upscale_amount) def construct_response(images: list, seeds: list, task_data: TaskData, base_seed: int): return [ ResponseImage( data=img_to_base64_str(img, task_data.output_format, task_data.output_quality), seed=seed, ) for img, seed in zip(images, seeds) ] def make_step_callback(req: GenerateImageRequest, task_data: TaskData, data_queue: queue.Queue, task_temp_images: list, step_callback, stream_image_progress: bool): n_steps = req.num_inference_steps if req.init_image is None else int(req.num_inference_steps * req.prompt_strength) last_callback_time = -1 def update_temp_img(x_samples, task_temp_images: list): partial_images = [] images = latent_samples_to_images(context, x_samples) for i, img in enumerate(images): buf = img_to_buffer(img, output_format='JPEG') context.temp_images[f"{task_data.request_id}/{i}"] = buf task_temp_images[i] = buf partial_images.append({'path': f"/image/tmp/{task_data.request_id}/{i}"}) del images return partial_images def on_image_step(x_samples, i): nonlocal last_callback_time context.partial_x_samples = x_samples step_time = time.time() - last_callback_time if last_callback_time != -1 else -1 last_callback_time = time.time() progress = {"step": i, "step_time": step_time, "total_steps": n_steps} if stream_image_progress and i % 5 == 0: progress['output'] = update_temp_img(x_samples, task_temp_images) data_queue.put(json.dumps(progress)) step_callback() if context.stop_processing: raise UserInitiatedStop("User requested that we stop processing") return on_image_step