import json import os, re import traceback import torch import numpy as np from omegaconf import OmegaConf from PIL import Image, ImageOps from tqdm import tqdm, trange from itertools import islice from einops import rearrange import time from pytorch_lightning import seed_everything from torch import autocast from contextlib import nullcontext from einops import rearrange, repeat from ldm.util import instantiate_from_config from optimizedSD.optimUtils import split_weighted_subprompts from transformers import logging from gfpgan import GFPGANer from basicsr.archs.rrdbnet_arch import RRDBNet from realesrgan import RealESRGANer import uuid logging.set_verbosity_error() # consts config_yaml = "optimizedSD/v1-inference.yaml" filename_regex = re.compile('[^a-zA-Z0-9]') # api stuff from . import Request, Response, Image as ResponseImage import base64 from io import BytesIO #from colorama import Fore # local stop_processing = False temp_images = {} ckpt_file = None gfpgan_file = None real_esrgan_file = None model = None modelCS = None modelFS = None model_gfpgan = None model_real_esrgan = None model_is_half = False model_fs_is_half = False device = None unet_bs = 1 precision = 'autocast' sampler_plms = None sampler_ddim = None has_valid_gpu = False force_full_precision = False try: gpu = torch.cuda.current_device() gpu_name = torch.cuda.get_device_name(gpu) print('GPU detected: ', gpu_name) force_full_precision = ('nvidia' in gpu_name.lower() or 'geforce' in gpu_name.lower()) and (' 1660' in gpu_name or ' 1650' in gpu_name) # otherwise these NVIDIA cards create green images if force_full_precision: print('forcing full precision on NVIDIA 16xx cards, to avoid green images. GPU detected: ', gpu_name) mem_free, mem_total = torch.cuda.mem_get_info(gpu) mem_total /= float(10**9) if mem_total < 3.0: print("GPUs with less than 3 GB of VRAM are not compatible with Stable Diffusion") raise Exception() has_valid_gpu = True except: print('WARNING: No compatible GPU found. Using the CPU, but this will be very slow!') pass def load_model_ckpt(ckpt_to_use, device_to_use='cuda', turbo=False, unet_bs_to_use=1, precision_to_use='autocast'): global ckpt_file, model, modelCS, modelFS, model_is_half, device, unet_bs, precision, model_fs_is_half device = device_to_use if has_valid_gpu else 'cpu' precision = precision_to_use if not force_full_precision else 'full' unet_bs = unet_bs_to_use unload_model() if device == 'cpu': precision = 'full' sd = load_model_from_config(f"{ckpt_to_use}.ckpt") li, lo = [], [] for key, value in sd.items(): sp = key.split(".") if (sp[0]) == "model": if "input_blocks" in sp: li.append(key) elif "middle_block" in sp: li.append(key) elif "time_embed" in sp: li.append(key) else: lo.append(key) for key in li: sd["model1." + key[6:]] = sd.pop(key) for key in lo: sd["model2." + key[6:]] = sd.pop(key) config = OmegaConf.load(f"{config_yaml}") model = instantiate_from_config(config.modelUNet) _, _ = model.load_state_dict(sd, strict=False) model.eval() model.cdevice = device model.unet_bs = unet_bs model.turbo = turbo modelCS = instantiate_from_config(config.modelCondStage) _, _ = modelCS.load_state_dict(sd, strict=False) modelCS.eval() modelCS.cond_stage_model.device = device modelFS = instantiate_from_config(config.modelFirstStage) _, _ = modelFS.load_state_dict(sd, strict=False) modelFS.eval() del sd if device != "cpu" and precision == "autocast": model.half() modelCS.half() modelFS.half() model_is_half = True model_fs_is_half = True else: model_is_half = False model_fs_is_half = False ckpt_file = ckpt_to_use print('loaded ', ckpt_file, 'to', device, 'precision', precision) def unload_model(): global model, modelCS, modelFS if model is not None: del model del modelCS del modelFS model = None modelCS = None modelFS = None def load_model_gfpgan(gfpgan_to_use): global gfpgan_file, model_gfpgan if gfpgan_to_use is None: return gfpgan_file = gfpgan_to_use model_path = gfpgan_to_use + ".pth" if device == 'cpu': model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cpu')) else: model_gfpgan = GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=torch.device('cuda')) print('loaded ', gfpgan_to_use, 'to', device, 'precision', precision) def load_model_real_esrgan(real_esrgan_to_use): global real_esrgan_file, model_real_esrgan if real_esrgan_to_use is None: return real_esrgan_file = real_esrgan_to_use model_path = real_esrgan_to_use + ".pth" RealESRGAN_models = { 'RealESRGAN_x4plus': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4), 'RealESRGAN_x4plus_anime_6B': RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) } model_to_use = RealESRGAN_models[real_esrgan_to_use] if device == 'cpu': model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=False) # cpu does not support half model_real_esrgan.device = torch.device('cpu') model_real_esrgan.model.to('cpu') else: model_real_esrgan = RealESRGANer(scale=2, model_path=model_path, model=model_to_use, pre_pad=0, half=model_is_half) model_real_esrgan.model.name = real_esrgan_to_use print('loaded ', real_esrgan_to_use, 'to', device, 'precision', precision) def get_base_path(disk_path, session_id, prompt, img_id, ext, suffix=None): if disk_path is None: return None if session_id is None: return None if ext is None: raise Exception('Missing ext') session_out_path = os.path.join(disk_path, session_id) os.makedirs(session_out_path, exist_ok=True) prompt_flattened = filename_regex.sub('_', prompt)[:50] if suffix is not None: return os.path.join(session_out_path, f"{prompt_flattened}_{img_id}_{suffix}.{ext}") return os.path.join(session_out_path, f"{prompt_flattened}_{img_id}.{ext}") def apply_filters(filter_name, image_data): print(f'Applying filter {filter_name}...') gc() if filter_name == 'gfpgan': _, _, output = model_gfpgan.enhance(image_data[:,:,::-1], has_aligned=False, only_center_face=False, paste_back=True) image_data = output[:,:,::-1] if filter_name == 'real_esrgan': output, _ = model_real_esrgan.enhance(image_data[:,:,::-1]) image_data = output[:,:,::-1] return image_data def mk_img(req: Request): try: yield from do_mk_img(req) except Exception as e: print(traceback.format_exc()) gc() if device != "cpu": modelFS.to("cpu") modelCS.to("cpu") model.model1.to("cpu") model.model2.to("cpu") gc() yield json.dumps({ "status": 'failed', "detail": str(e) }) def do_mk_img(req: Request): global ckpt_file global model, modelCS, modelFS, device global model_gfpgan, model_real_esrgan global stop_processing stop_processing = False res = Response() res.request = req res.images = [] temp_images.clear() # custom model support: # the req.use_stable_diffusion_model needs to be a valid path # to the ckpt file (without the extension). needs_model_reload = False ckpt_to_use = ckpt_file if ckpt_to_use != req.use_stable_diffusion_model: ckpt_to_use = req.use_stable_diffusion_model needs_model_reload = True model.turbo = req.turbo if req.use_cpu: if device != 'cpu': device = 'cpu' if model_is_half: load_model_ckpt(ckpt_to_use, device) needs_model_reload = False load_model_gfpgan(gfpgan_file) load_model_real_esrgan(real_esrgan_file) else: if has_valid_gpu: prev_device = device device = 'cuda' if (precision == 'autocast' and (req.use_full_precision or not model_is_half)) or \ (precision == 'full' and not req.use_full_precision and not force_full_precision): load_model_ckpt(ckpt_to_use, device, req.turbo, unet_bs, ('full' if req.use_full_precision else 'autocast')) needs_model_reload = False if prev_device != device: load_model_gfpgan(gfpgan_file) load_model_real_esrgan(real_esrgan_file) if needs_model_reload: load_model_ckpt(ckpt_to_use, device, req.turbo, unet_bs, precision) if req.use_face_correction != gfpgan_file: load_model_gfpgan(req.use_face_correction) if req.use_upscale != real_esrgan_file: load_model_real_esrgan(req.use_upscale) model.cdevice = device modelCS.cond_stage_model.device = device opt_prompt = req.prompt opt_seed = req.seed opt_n_iter = 1 opt_C = 4 opt_f = 8 opt_ddim_eta = 0.0 opt_init_img = req.init_image img_id = base64.b64encode(int(time.time()).to_bytes(8, 'big')).decode() # Generate unique ID based on time. img_id = img_id.translate({43:None, 47:None, 61:None})[-8:] # Remove + / = and keep last 8 chars. print(req.to_string(), '\n device', device) print('\n\n Using precision:', precision) seed_everything(opt_seed) batch_size = req.num_outputs prompt = opt_prompt assert prompt is not None data = [batch_size * [prompt]] if precision == "autocast" and device != "cpu": precision_scope = autocast else: precision_scope = nullcontext mask = None if req.init_image is None: handler = _txt2img init_latent = None t_enc = None else: handler = _img2img init_image = load_img(req.init_image, req.width, req.height) init_image = init_image.to(device) if device != "cpu" and precision == "autocast": init_image = init_image.half() modelFS.to(device) init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) init_latent = modelFS.get_first_stage_encoding(modelFS.encode_first_stage(init_image)) # move to latent space if req.mask is not None: mask = load_mask(req.mask, req.width, req.height, init_latent.shape[2], init_latent.shape[3], True).to(device) mask = mask[0][0].unsqueeze(0).repeat(4, 1, 1).unsqueeze(0) mask = repeat(mask, '1 ... -> b ...', b=batch_size) if device != "cpu" and precision == "autocast": mask = mask.half() move_fs_to_cpu() assert 0. <= req.prompt_strength <= 1., 'can only work with strength in [0.0, 1.0]' t_enc = int(req.prompt_strength * req.num_inference_steps) print(f"target t_enc is {t_enc} steps") if req.save_to_disk_path is not None: session_out_path = os.path.join(req.save_to_disk_path, req.session_id) os.makedirs(session_out_path, exist_ok=True) else: session_out_path = None seeds = "" with torch.no_grad(): for n in trange(opt_n_iter, desc="Sampling"): for prompts in tqdm(data, desc="data"): with precision_scope("cuda"): modelCS.to(device) uc = None if req.guidance_scale != 1.0: uc = modelCS.get_learned_conditioning(batch_size * [req.negative_prompt]) if isinstance(prompts, tuple): prompts = list(prompts) subprompts, weights = split_weighted_subprompts(prompts[0]) if len(subprompts) > 1: c = torch.zeros_like(uc) totalWeight = sum(weights) # normalize each "sub prompt" and add it for i in range(len(subprompts)): weight = weights[i] # if not skip_normalize: weight = weight / totalWeight c = torch.add(c, modelCS.get_learned_conditioning(subprompts[i]), alpha=weight) else: c = modelCS.get_learned_conditioning(prompts) modelFS.to(device) partial_x_samples = None last_callback_time = -1 def img_callback(x_samples, i): nonlocal partial_x_samples, last_callback_time partial_x_samples = x_samples if req.stream_progress_updates: n_steps = req.num_inference_steps if req.init_image is None else t_enc step_time = time.time() - last_callback_time if last_callback_time != -1 else -1 last_callback_time = time.time() progress = {"step": i, "total_steps": n_steps, "step_time": step_time} if req.stream_image_progress and i % 5 == 0: partial_images = [] for i in range(batch_size): x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0)) x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c") x_sample = x_sample.astype(np.uint8) img = Image.fromarray(x_sample) buf = BytesIO() img.save(buf, format='JPEG') buf.seek(0) del img, x_sample, x_samples_ddim # don't delete x_samples, it is used in the code that called this callback temp_images[str(req.session_id) + '/' + str(i)] = buf partial_images.append({'path': f'/image/tmp/{req.session_id}/{i}'}) progress['output'] = partial_images yield json.dumps(progress) if stop_processing: raise UserInitiatedStop("User requested that we stop processing") # run the handler try: if handler == _txt2img: x_samples = _txt2img(req.width, req.height, req.num_outputs, req.num_inference_steps, req.guidance_scale, None, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, req.sampler) else: x_samples = _img2img(init_latent, t_enc, batch_size, req.guidance_scale, c, uc, req.num_inference_steps, opt_ddim_eta, opt_seed, img_callback, mask) yield from x_samples x_samples = partial_x_samples except UserInitiatedStop: if partial_x_samples is None: continue x_samples = partial_x_samples print("saving images") for i in range(batch_size): x_samples_ddim = modelFS.decode_first_stage(x_samples[i].unsqueeze(0)) x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) x_sample = 255.0 * rearrange(x_sample[0].cpu().numpy(), "c h w -> h w c") x_sample = x_sample.astype(np.uint8) img = Image.fromarray(x_sample) has_filters = (req.use_face_correction is not None and req.use_face_correction.startswith('GFPGAN')) or \ (req.use_upscale is not None and req.use_upscale.startswith('RealESRGAN')) return_orig_img = not has_filters or not req.show_only_filtered_image if stop_processing: return_orig_img = True if req.save_to_disk_path is not None: if return_orig_img: img_out_path = get_base_path(req.save_to_disk_path, req.session_id, prompts[0], img_id, req.output_format) save_image(img, img_out_path) meta_out_path = get_base_path(req.save_to_disk_path, req.session_id, prompts[0], img_id, 'txt') save_metadata(meta_out_path, req, prompts[0], opt_seed) if return_orig_img: img_data = img_to_base64_str(img, req.output_format) res_image_orig = ResponseImage(data=img_data, seed=opt_seed) res.images.append(res_image_orig) if req.save_to_disk_path is not None: res_image_orig.path_abs = img_out_path del img if has_filters and not stop_processing: filters_applied = [] if req.use_face_correction: x_sample = apply_filters('gfpgan', x_sample) filters_applied.append(req.use_face_correction) if req.use_upscale: x_sample = apply_filters('real_esrgan', x_sample) filters_applied.append(req.use_upscale) if (len(filters_applied) > 0): filtered_image = Image.fromarray(x_sample) filtered_img_data = img_to_base64_str(filtered_image, req.output_format) response_image = ResponseImage(data=filtered_img_data, seed=req.seed) res.images.append(response_image) if req.save_to_disk_path is not None: filtered_img_out_path = get_base_path(req.save_to_disk_path, req.session_id, prompts[0], img_id, req.output_format, "_".join(filters_applied)) save_image(filtered_image, filtered_img_out_path) response_image.path_abs = filtered_img_out_path del filtered_image seeds += str(opt_seed) + "," opt_seed += 1 move_fs_to_cpu() gc() del x_samples, x_samples_ddim, x_sample print("memory_final = ", torch.cuda.memory_allocated() / 1e6) print('Task completed') yield json.dumps(res.json()) def save_image(img, img_out_path): try: img.save(img_out_path) except: print('could not save the file', traceback.format_exc()) def save_metadata(meta_out_path, req, prompt, opt_seed): metadata = f"""{prompt} Width: {req.width} Height: {req.height} Seed: {opt_seed} Steps: {req.num_inference_steps} Guidance Scale: {req.guidance_scale} Prompt Strength: {req.prompt_strength} Use Face Correction: {req.use_face_correction} Use Upscaling: {req.use_upscale} Sampler: {req.sampler} Negative Prompt: {req.negative_prompt} Stable Diffusion Model: {req.use_stable_diffusion_model + '.ckpt'} """ try: with open(meta_out_path, 'w', encoding='utf-8') as f: f.write(metadata) except: print('could not save the file', traceback.format_exc()) def _txt2img(opt_W, opt_H, opt_n_samples, opt_ddim_steps, opt_scale, start_code, opt_C, opt_f, opt_ddim_eta, c, uc, opt_seed, img_callback, mask, sampler_name): shape = [opt_n_samples, opt_C, opt_H // opt_f, opt_W // opt_f] if device != "cpu": mem = torch.cuda.memory_allocated() / 1e6 modelCS.to("cpu") while torch.cuda.memory_allocated() / 1e6 >= mem: time.sleep(1) if sampler_name == 'ddim': model.make_schedule(ddim_num_steps=opt_ddim_steps, ddim_eta=opt_ddim_eta, verbose=False) samples_ddim = model.sample( S=opt_ddim_steps, conditioning=c, seed=opt_seed, shape=shape, verbose=False, unconditional_guidance_scale=opt_scale, unconditional_conditioning=uc, eta=opt_ddim_eta, x_T=start_code, img_callback=img_callback, mask=mask, sampler = sampler_name, ) yield from samples_ddim def _img2img(init_latent, t_enc, batch_size, opt_scale, c, uc, opt_ddim_steps, opt_ddim_eta, opt_seed, img_callback, mask): # encode (scaled latent) z_enc = model.stochastic_encode( init_latent, torch.tensor([t_enc] * batch_size).to(device), opt_seed, opt_ddim_eta, opt_ddim_steps, ) x_T = None if mask is None else init_latent # decode it samples_ddim = model.sample( t_enc, c, z_enc, unconditional_guidance_scale=opt_scale, unconditional_conditioning=uc, img_callback=img_callback, mask=mask, x_T=x_T, sampler = 'ddim' ) yield from samples_ddim def move_fs_to_cpu(): if device != "cpu": mem = torch.cuda.memory_allocated() / 1e6 modelFS.to("cpu") while torch.cuda.memory_allocated() / 1e6 >= mem: time.sleep(1) def gc(): if device == 'cpu': return torch.cuda.empty_cache() torch.cuda.ipc_collect() # internal def chunk(it, size): it = iter(it) return iter(lambda: tuple(islice(it, size)), ()) def load_model_from_config(ckpt, verbose=False): print(f"Loading model from {ckpt}") pl_sd = torch.load(ckpt, map_location="cpu") if "global_step" in pl_sd: print(f"Global Step: {pl_sd['global_step']}") sd = pl_sd["state_dict"] return sd # utils class UserInitiatedStop(Exception): pass def load_img(img_str, w0, h0): image = base64_str_to_img(img_str).convert("RGB") w, h = image.size print(f"loaded input image of size ({w}, {h}) from base64") if h0 is not None and w0 is not None: h, w = h0, w0 w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64 image = image.resize((w, h), resample=Image.Resampling.LANCZOS) image = np.array(image).astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) return 2.*image - 1. def load_mask(mask_str, h0, w0, newH, newW, invert=False): image = base64_str_to_img(mask_str).convert("RGB") w, h = image.size print(f"loaded input mask of size ({w}, {h})") if invert: print("inverted") image = ImageOps.invert(image) # where_0, where_1 = np.where(image == 0), np.where(image == 255) # image[where_0], image[where_1] = 255, 0 if h0 is not None and w0 is not None: h, w = h0, w0 w, h = map(lambda x: x - x % 64, (w, h)) # resize to integer multiple of 64 print(f"New mask size ({w}, {h})") image = image.resize((newW, newH), resample=Image.Resampling.LANCZOS) image = np.array(image) image = image.astype(np.float32) / 255.0 image = image[None].transpose(0, 3, 1, 2) image = torch.from_numpy(image) return image # https://stackoverflow.com/a/61114178 def img_to_base64_str(img, output_format="PNG"): buffered = BytesIO() img.save(buffered, format=output_format) buffered.seek(0) img_byte = buffered.getvalue() img_str = "data:image/png;base64," + base64.b64encode(img_byte).decode() return img_str def base64_str_to_img(img_str): img_str = img_str[len("data:image/png;base64,"):] data = base64.b64decode(img_str) buffered = BytesIO(data) img = Image.open(buffered) return img