from fastapi import FastAPI from starlette.responses import FileResponse from pydantic import BaseModel import requests LOCAL_SERVER_URL = 'http://localhost:5000' PREDICT_URL = LOCAL_SERVER_URL + '/predictions' app = FastAPI() # defaults from https://huggingface.co/blog/stable_diffusion class ImageRequest(BaseModel): prompt: str num_outputs: str = "1" num_inference_steps: str = "50" guidance_scale: str = "7.5" width: str = "512" height: str = "512" seed: str = "30000" @app.get('/') def read_root(): return FileResponse('index.html') @app.get('/ping') async def ping(): try: requests.get(LOCAL_SERVER_URL) return {'OK'} except: return {'ERROR'} @app.post('/image') async def image(req : ImageRequest): data = { "input": { "prompt": req.prompt, "num_outputs": req.num_outputs, "num_inference_steps": req.num_inference_steps, "width": req.width, "height": req.height, "seed": req.seed, "guidance_scale": req.guidance_scale, } } if req.seed == "-1": del data['input']['seed'] res = requests.post(PREDICT_URL, json=data) print(res) return res.json() @app.get('/ding.mp3') def read_root(): return FileResponse('ding.mp3')