cmdr2 0778078350
Merge pull request #1087 from ogmaresca/custom-folder-filename-formats-2
Allow loading/saving app.config from plugins and support custom folder/filename formats from app.config
2023-04-06 16:19:59 +05:30

275 lines
9.4 KiB
Python

import os
import time
import base64
import re
from easydiffusion import app
from easydiffusion.types import TaskData, GenerateImageRequest
from functools import reduce
from datetime import datetime
from sdkit.utils import save_images, save_dicts
from numpy import base_repr
filename_regex = re.compile("[^a-zA-Z0-9._-]")
img_number_regex = re.compile("([0-9]{5,})")
# keep in sync with `ui/media/js/dnd.js`
TASK_TEXT_MAPPING = {
"prompt": "Prompt",
"width": "Width",
"height": "Height",
"seed": "Seed",
"num_inference_steps": "Steps",
"guidance_scale": "Guidance Scale",
"prompt_strength": "Prompt Strength",
"use_face_correction": "Use Face Correction",
"use_upscale": "Use Upscaling",
"upscale_amount": "Upscale By",
"sampler_name": "Sampler",
"negative_prompt": "Negative Prompt",
"use_stable_diffusion_model": "Stable Diffusion model",
"use_vae_model": "VAE model",
"use_hypernetwork_model": "Hypernetwork model",
"hypernetwork_strength": "Hypernetwork Strength",
"use_lora_model": "LoRA model",
"lora_alpha": "LoRA Strength",
}
time_placeholders = {
"$yyyy": "%Y",
"$MM": "%m",
"$dd": "%d",
"$HH": "%H",
"$mm": "%M",
"$ss": "%S",
}
other_placeholders = {
"$id": lambda req, task_data: filename_regex.sub("_", task_data.session_id),
"$p": lambda req, task_data: filename_regex.sub("_", req.prompt)[:50],
"$s": lambda req, task_data: str(req.seed),
}
class ImageNumber:
_factory = None
_evaluated = False
def __init__(self, factory):
self._factory = factory
self._evaluated = None
def __call__(self) -> int:
if self._evaluated is None:
self._evaluated = self._factory()
return self._evaluated
def format_placeholders(format: str, req: GenerateImageRequest, task_data: TaskData, now = None):
if now is None:
now = time.time()
for placeholder, time_format in time_placeholders.items():
if placeholder in format:
format = format.replace(placeholder, datetime.fromtimestamp(now).strftime(time_format))
for placeholder, replace_func in other_placeholders.items():
if placeholder in format:
format = format.replace(placeholder, replace_func(req, task_data))
return format
def format_folder_name(format: str, req: GenerateImageRequest, task_data: TaskData):
format = format_placeholders(format, req, task_data)
return filename_regex.sub("_", format)
def format_file_name(
format: str,
req: GenerateImageRequest,
task_data: TaskData,
now: float,
batch_file_number: int,
folder_img_number: ImageNumber,
):
format = format_placeholders(format, req, task_data, now)
if "$n" in format:
format = format.replace("$n", f"{folder_img_number():05}")
if "$tsb64" in format:
img_id = base_repr(int(now * 10000), 36)[-7:] + base_repr(int(batch_file_number), 36) # Base 36 conversion, 0-9, A-Z
format = format.replace("$tsb64", img_id)
if "$ts" in format:
format = format.replace("$ts", str(int(now * 1000) + batch_file_number))
return filename_regex.sub("_", format)
def save_images_to_disk(images: list, filtered_images: list, req: GenerateImageRequest, task_data: TaskData):
now = time.time()
app_config = app.getConfig()
folder_format = app_config.get("folder_format", "$id")
save_dir_path = os.path.join(task_data.save_to_disk_path, format_folder_name(folder_format, req, task_data))
metadata_entries = get_metadata_entries_for_request(req, task_data)
file_number = calculate_img_number(save_dir_path, task_data)
make_filename = make_filename_callback(
app_config.get("filename_format", "$p_$tsb64"),
req,
task_data,
file_number,
now=now,
)
if task_data.show_only_filtered_image or filtered_images is images:
save_images(
filtered_images,
save_dir_path,
file_name=make_filename,
output_format=task_data.output_format,
output_quality=task_data.output_quality,
output_lossless=task_data.output_lossless,
)
if task_data.metadata_output_format:
for metadata_output_format in task_data.metadata_output_format.split(','):
if metadata_output_format.lower() in ["json", "txt", "embed"]:
save_dicts(
metadata_entries,
save_dir_path,
file_name=make_filename,
output_format=metadata_output_format,
file_format=task_data.output_format,
)
else:
make_filter_filename = make_filename_callback(req, task_data, file_number, now=now, suffix="filtered")
save_images(
images,
save_dir_path,
file_name=make_filename,
output_format=task_data.output_format,
output_quality=task_data.output_quality,
output_lossless=task_data.output_lossless,
)
save_images(
filtered_images,
save_dir_path,
file_name=make_filter_filename,
output_format=task_data.output_format,
output_quality=task_data.output_quality,
output_lossless=task_data.output_lossless,
)
if task_data.metadata_output_format.lower() in ["json", "txt", "embed"]:
save_dicts(
metadata_entries,
save_dir_path,
file_name=make_filter_filename,
output_format=task_data.metadata_output_format,
file_format=task_data.output_format,
)
def get_metadata_entries_for_request(req: GenerateImageRequest, task_data: TaskData):
metadata = get_printable_request(req)
metadata.update(
{
"use_stable_diffusion_model": task_data.use_stable_diffusion_model,
"use_vae_model": task_data.use_vae_model,
"use_hypernetwork_model": task_data.use_hypernetwork_model,
"use_lora_model": task_data.use_lora_model,
"use_face_correction": task_data.use_face_correction,
"use_upscale": task_data.use_upscale,
}
)
if metadata["use_upscale"] is not None:
metadata["upscale_amount"] = task_data.upscale_amount
if task_data.use_hypernetwork_model is None:
del metadata["hypernetwork_strength"]
if task_data.use_lora_model is None:
if "lora_alpha" in metadata:
del metadata["lora_alpha"]
app_config = app.getConfig()
if not app_config.get("test_diffusers", False) and "use_lora_model" in metadata:
del metadata["use_lora_model"]
# if text, format it in the text format expected by the UI
is_txt_format = task_data.metadata_output_format.lower() == "txt"
if is_txt_format:
metadata = {TASK_TEXT_MAPPING[key]: val for key, val in metadata.items() if key in TASK_TEXT_MAPPING}
entries = [metadata.copy() for _ in range(req.num_outputs)]
for i, entry in enumerate(entries):
entry["Seed" if is_txt_format else "seed"] = req.seed + i
return entries
def get_printable_request(req: GenerateImageRequest):
metadata = req.dict()
del metadata["init_image"]
del metadata["init_image_mask"]
if req.init_image is None:
del metadata["prompt_strength"]
return metadata
def make_filename_callback(
filename_format: str,
req: GenerateImageRequest,
task_data: TaskData,
folder_img_number: int,
suffix=None,
now=None,
):
if now is None:
now = time.time()
def make_filename(i):
name = format_file_name(filename_format, req, task_data, now, i, folder_img_number)
name = name if suffix is None else f"{name}_{suffix}"
return name
return make_filename
def _calculate_img_number(save_dir_path: str, task_data: TaskData):
def get_highest_img_number(accumulator: int, file: os.DirEntry) -> int:
if not file.is_file:
return accumulator
if len(list(filter(lambda e: file.name.endswith(e), app.IMAGE_EXTENSIONS))) == 0:
return accumulator
get_highest_img_number.number_of_images = get_highest_img_number.number_of_images + 1
number_match = img_number_regex.match(file.name)
if not number_match:
return accumulator
file_number = number_match.group().lstrip('0')
# Handle 00000
return int(file_number) if file_number else 0
get_highest_img_number.number_of_images = 0
highest_file_number = -1
if os.path.isdir(save_dir_path):
existing_files = list(os.scandir(save_dir_path))
highest_file_number = reduce(get_highest_img_number, existing_files, -1)
calculated_img_number = max(highest_file_number, get_highest_img_number.number_of_images - 1)
if task_data.session_id in _calculate_img_number.session_img_numbers:
calculated_img_number = max(
_calculate_img_number.session_img_numbers[task_data.session_id],
calculated_img_number,
)
calculated_img_number = calculated_img_number + 1
_calculate_img_number.session_img_numbers[task_data.session_id] = calculated_img_number
return calculated_img_number
_calculate_img_number.session_img_numbers = {}
def calculate_img_number(save_dir_path: str, task_data: TaskData):
return ImageNumber(lambda: _calculate_img_number(save_dir_path, task_data))