easydiffusion/ui/sd_internal/save_utils.py
2022-12-14 16:30:19 +05:30

80 lines
3.6 KiB
Python

import os
import time
import base64
import re
from diffusionkit import data_utils
from diffusionkit.types import GenerateImageRequest
from sd_internal import TaskData
filename_regex = re.compile('[^a-zA-Z0-9]')
# keep in sync with `ui/media/js/dnd.js`
TASK_TEXT_MAPPING = {
'prompt': 'Prompt',
'width': 'Width',
'height': 'Height',
'seed': 'Seed',
'num_inference_steps': 'Steps',
'guidance_scale': 'Guidance Scale',
'prompt_strength': 'Prompt Strength',
'use_face_correction': 'Use Face Correction',
'use_upscale': 'Use Upscaling',
'sampler_name': 'Sampler',
'negative_prompt': 'Negative Prompt',
'use_stable_diffusion_model': 'Stable Diffusion model',
'use_hypernetwork_model': 'Hypernetwork model',
'hypernetwork_strength': 'Hypernetwork Strength'
}
def save_to_disk(images: list, filtered_images: list, req: GenerateImageRequest, task_data: TaskData):
save_folder_path = os.path.join(task_data.save_to_disk_path, filename_regex.sub('_', task_data.session_id))
metadata_entries = get_metadata_entries(req, task_data)
if task_data.show_only_filtered_image or filtered_images == images:
data_utils.save_images(filtered_images, save_folder_path, file_name=make_filename_callback(req), output_format=task_data.output_format, output_quality=task_data.output_quality)
data_utils.save_metadata(metadata_entries, save_folder_path, file_name=make_filename_callback(req), output_format=task_data.metadata_output_format)
else:
data_utils.save_images(images, save_folder_path, file_name=make_filename_callback(req), output_format=task_data.output_format, output_quality=task_data.output_quality)
data_utils.save_images(filtered_images, save_folder_path, file_name=make_filename_callback(req, suffix='filtered'), output_format=task_data.output_format, output_quality=task_data.output_quality)
data_utils.save_metadata(metadata_entries, save_folder_path, file_name=make_filename_callback(req, suffix='filtered'), output_format=task_data.metadata_output_format)
def get_metadata_entries(req: GenerateImageRequest, task_data: TaskData):
metadata = get_printable_request(req)
metadata.update({
'use_stable_diffusion_model': task_data.use_stable_diffusion_model,
'use_vae_model': task_data.use_vae_model,
'use_hypernetwork_model': task_data.use_hypernetwork_model,
'use_face_correction': task_data.use_face_correction,
'use_upscale': task_data.use_upscale,
})
# if text, format it in the text format expected by the UI
is_txt_format = (task_data.metadata_output_format.lower() == 'txt')
if is_txt_format:
metadata = {TASK_TEXT_MAPPING[key]: val for key, val in metadata.items() if key in TASK_TEXT_MAPPING}
entries = [metadata.copy() for _ in range(req.num_outputs)]
for i, entry in enumerate(entries):
entry['Seed' if is_txt_format else 'seed'] = req.seed + i
return entries
def get_printable_request(req: GenerateImageRequest):
metadata = req.dict()
del metadata['init_image']
del metadata['init_image_mask']
return metadata
def make_filename_callback(req: GenerateImageRequest, suffix=None):
def make_filename(i):
img_id = base64.b64encode(int(time.time()+i).to_bytes(8, 'big')).decode() # Generate unique ID based on time.
img_id = img_id.translate({43:None, 47:None, 61:None})[-8:] # Remove + / = and keep last 8 chars.
prompt_flattened = filename_regex.sub('_', req.prompt)[:50]
name = f"{prompt_flattened}_{img_id}"
name = name if suffix is None else f'{name}_{suffix}'
return name
return make_filename