mirror of
https://github.com/easydiffusion/easydiffusion.git
synced 2025-01-15 10:48:54 +01:00
208 lines
8.3 KiB
Python
208 lines
8.3 KiB
Python
import os
|
|
import logging
|
|
import picklescan.scanner
|
|
import rich
|
|
|
|
from sd_internal import app, TaskData
|
|
from diffusionkit import model_loader
|
|
from diffusionkit.types import Context
|
|
|
|
log = logging.getLogger()
|
|
|
|
KNOWN_MODEL_TYPES = ['stable-diffusion', 'vae', 'hypernetwork', 'gfpgan', 'realesrgan']
|
|
MODEL_EXTENSIONS = {
|
|
'stable-diffusion': ['.ckpt', '.safetensors'],
|
|
'vae': ['.vae.pt', '.ckpt'],
|
|
'hypernetwork': ['.pt'],
|
|
'gfpgan': ['.pth'],
|
|
'realesrgan': ['.pth'],
|
|
}
|
|
DEFAULT_MODELS = {
|
|
'stable-diffusion': [ # needed to support the legacy installations
|
|
'custom-model', # only one custom model file was supported initially, creatively named 'custom-model'
|
|
'sd-v1-4', # Default fallback.
|
|
],
|
|
'gfpgan': ['GFPGANv1.3'],
|
|
'realesrgan': ['RealESRGAN_x4plus'],
|
|
}
|
|
|
|
known_models = {}
|
|
|
|
def init():
|
|
make_model_folders()
|
|
getModels() # run this once, to cache the picklescan results
|
|
|
|
def load_default_models(context: Context):
|
|
# init default model paths
|
|
for model_type in KNOWN_MODEL_TYPES:
|
|
context.model_paths[model_type] = resolve_model_to_use(model_type=model_type)
|
|
|
|
# disable TURBO initially (this should be read from the config eventually)
|
|
context.vram_optimizations -= {'TURBO'}
|
|
|
|
# load mandatory models
|
|
model_loader.load_model(context, 'stable-diffusion')
|
|
model_loader.load_model(context, 'vae')
|
|
model_loader.load_model(context, 'hypernetwork')
|
|
|
|
def unload_all(context: Context):
|
|
for model_type in KNOWN_MODEL_TYPES:
|
|
model_loader.unload_model(context, model_type)
|
|
|
|
def resolve_model_to_use(model_name:str=None, model_type:str=None):
|
|
model_extensions = MODEL_EXTENSIONS.get(model_type, [])
|
|
default_models = DEFAULT_MODELS.get(model_type, [])
|
|
config = app.getConfig()
|
|
|
|
model_dirs = [os.path.join(app.MODELS_DIR, model_type), app.SD_DIR]
|
|
if not model_name: # When None try user configured model.
|
|
# config = getConfig()
|
|
if 'model' in config and model_type in config['model']:
|
|
model_name = config['model'][model_type]
|
|
|
|
if model_name:
|
|
is_sd2 = config.get('test_sd2', False)
|
|
if model_name.startswith('sd2_') and not is_sd2: # temp hack, until SD2 is unified with 1.4
|
|
log.error('ERROR: Cannot use SD 2.0 models with SD 1.0 code. Using the sd-v1-4 model instead!')
|
|
model_name = 'sd-v1-4'
|
|
|
|
# Check models directory
|
|
models_dir_path = os.path.join(app.MODELS_DIR, model_type, model_name)
|
|
for model_extension in model_extensions:
|
|
if os.path.exists(models_dir_path + model_extension):
|
|
return models_dir_path + model_extension
|
|
if os.path.exists(model_name + model_extension):
|
|
return os.path.abspath(model_name + model_extension)
|
|
|
|
# Default locations
|
|
if model_name in default_models:
|
|
default_model_path = os.path.join(app.SD_DIR, model_name)
|
|
for model_extension in model_extensions:
|
|
if os.path.exists(default_model_path + model_extension):
|
|
return default_model_path + model_extension
|
|
|
|
# Can't find requested model, check the default paths.
|
|
for default_model in default_models:
|
|
for model_dir in model_dirs:
|
|
default_model_path = os.path.join(model_dir, default_model)
|
|
for model_extension in model_extensions:
|
|
if os.path.exists(default_model_path + model_extension):
|
|
if model_name is not None:
|
|
log.warn(f'Could not find the configured custom model {model_name}{model_extension}. Using the default one: {default_model_path}{model_extension}')
|
|
return default_model_path + model_extension
|
|
|
|
return None
|
|
|
|
def reload_models_if_necessary(context: Context, task_data: TaskData):
|
|
model_paths_in_req = (
|
|
('stable-diffusion', task_data.use_stable_diffusion_model),
|
|
('vae', task_data.use_vae_model),
|
|
('hypernetwork', task_data.use_hypernetwork_model),
|
|
('gfpgan', task_data.use_face_correction),
|
|
('realesrgan', task_data.use_upscale),
|
|
)
|
|
|
|
for model_type, model_path_in_req in model_paths_in_req:
|
|
if context.model_paths.get(model_type) != model_path_in_req:
|
|
context.model_paths[model_type] = model_path_in_req
|
|
|
|
action_fn = model_loader.unload_model if context.model_paths[model_type] is None else model_loader.load_model
|
|
action_fn(context, model_type)
|
|
|
|
def resolve_model_paths(task_data: TaskData):
|
|
task_data.use_stable_diffusion_model = resolve_model_to_use(task_data.use_stable_diffusion_model, model_type='stable-diffusion')
|
|
task_data.use_vae_model = resolve_model_to_use(task_data.use_vae_model, model_type='vae')
|
|
task_data.use_hypernetwork_model = resolve_model_to_use(task_data.use_hypernetwork_model, model_type='hypernetwork')
|
|
|
|
if task_data.use_face_correction: task_data.use_face_correction = resolve_model_to_use(task_data.use_face_correction, 'gfpgan')
|
|
if task_data.use_upscale: task_data.use_upscale = resolve_model_to_use(task_data.use_upscale, 'gfpgan')
|
|
|
|
def set_vram_optimizations(context: Context, task_data: TaskData):
|
|
if task_data.turbo:
|
|
context.vram_optimizations.add('TURBO')
|
|
else:
|
|
context.vram_optimizations.remove('TURBO')
|
|
|
|
def make_model_folders():
|
|
for model_type in KNOWN_MODEL_TYPES:
|
|
model_dir_path = os.path.join(app.MODELS_DIR, model_type)
|
|
|
|
os.makedirs(model_dir_path, exist_ok=True)
|
|
|
|
help_file_name = f'Place your {model_type} model files here.txt'
|
|
help_file_contents = f'Supported extensions: {" or ".join(MODEL_EXTENSIONS.get(model_type))}'
|
|
|
|
with open(os.path.join(model_dir_path, help_file_name), 'w', encoding='utf-8') as f:
|
|
f.write(help_file_contents)
|
|
|
|
def is_malicious_model(file_path):
|
|
try:
|
|
scan_result = picklescan.scanner.scan_file_path(file_path)
|
|
if scan_result.issues_count > 0 or scan_result.infected_files > 0:
|
|
log.warn(":warning: [bold red]Scan %s: %d scanned, %d issue, %d infected.[/bold red]" % (file_path, scan_result.scanned_files, scan_result.issues_count, scan_result.infected_files))
|
|
return True
|
|
else:
|
|
log.debug("Scan %s: [green]%d scanned, %d issue, %d infected.[/green]" % (file_path, scan_result.scanned_files, scan_result.issues_count, scan_result.infected_files))
|
|
return False
|
|
except Exception as e:
|
|
log.error(f'error while scanning: {file_path}, error: {e}')
|
|
return False
|
|
|
|
def getModels():
|
|
models = {
|
|
'active': {
|
|
'stable-diffusion': 'sd-v1-4',
|
|
'vae': '',
|
|
'hypernetwork': '',
|
|
},
|
|
'options': {
|
|
'stable-diffusion': ['sd-v1-4'],
|
|
'vae': [],
|
|
'hypernetwork': [],
|
|
},
|
|
}
|
|
|
|
models_scanned = 0
|
|
def listModels(model_type):
|
|
nonlocal models_scanned
|
|
|
|
model_extensions = MODEL_EXTENSIONS.get(model_type, [])
|
|
models_dir = os.path.join(app.MODELS_DIR, model_type)
|
|
if not os.path.exists(models_dir):
|
|
os.makedirs(models_dir)
|
|
|
|
for file in os.listdir(models_dir):
|
|
for model_extension in model_extensions:
|
|
if not file.endswith(model_extension):
|
|
continue
|
|
|
|
model_path = os.path.join(models_dir, file)
|
|
mtime = os.path.getmtime(model_path)
|
|
mod_time = known_models[model_path] if model_path in known_models else -1
|
|
if mod_time != mtime:
|
|
models_scanned += 1
|
|
if is_malicious_model(model_path):
|
|
models['scan-error'] = file
|
|
return
|
|
known_models[model_path] = mtime
|
|
|
|
model_name = file[:-len(model_extension)]
|
|
models['options'][model_type].append(model_name)
|
|
|
|
models['options'][model_type] = [*set(models['options'][model_type])] # remove duplicates
|
|
models['options'][model_type].sort()
|
|
|
|
# custom models
|
|
listModels(model_type='stable-diffusion')
|
|
listModels(model_type='vae')
|
|
listModels(model_type='hypernetwork')
|
|
|
|
if models_scanned > 0: log.info(f'[green]Scanned {models_scanned} models. Nothing infected[/]')
|
|
|
|
# legacy
|
|
custom_weight_path = os.path.join(app.SD_DIR, 'custom-model.ckpt')
|
|
if os.path.exists(custom_weight_path):
|
|
models['options']['stable-diffusion'].append('custom-model')
|
|
|
|
return models
|