
ETemplate2 JavaScript
Documentation

Abstract

In contrast to our last approach, the new ETemplate2 -System renders the ETem-
plate templates completely on the client. When a template should be displayed,
the URL to the template definition XET file, plus the initial content array is
sent to the client. The client downloads the XET file (most of the time it will
come from the browser cache), parses and renders it and sets the values of the
widget according to the ones defined in the content array.

JS Inheritance System

Instead of using the jQuery-Class system as we did before, a new inheritance
system has been introduced (see et2 inheritance.js). It features:

• Basic class inheritance

• Support for interfaces

• Support for attributes

Basic inheritance

To create a class write

var MyClass = Class.extend([interfaces, ] functions/attributes);

where “interfaces” is a single interface or an array of interfaces (see below) and
functions/attributes an object containing the functions the class implements.
You can extend MyClass again by writing

var MyOtherClass = MyClass.extend([interfaces, ]

functions/attributes);

1



ETemplate2 JavaScript Documentation

The extend function only extends the prototype and is only run once, when
the JS file is intially parsed. Creating classes using the inheritance system
introduces nearly no additional speed impact.

Defining functions

Simple functions: To define a function simply add it to the functions object:

var MyClass = Class.extend({

myFunction: function(_param) {

console.log("myFunction has been " +

"called with param", param);

}

});

Override functions: To override functions in another class write:

var MyOtherClass = MyClass.extend({

myFunction: function(_param1, _param2) {

// If this._super is not found inside

// the function, the code overhead for

// overriding functions is not created

this._super(_param1);

console.log("And _param2 is ", _param2);

}

});

Constructor and destructor: The constructor function is named “init”. It
underlies the same overriding-mechanism as all other functions. When overrid-
ing the init function it is the best (as it probably is with all other functions too)
to call the inherited super function with

this._super.apply(this, arguments);

The destructor is not really part of the inheritance system but used inside
the widget system. The destructor is named “destroy” and should always be
written in order to free all references to other objects, delete all DOM-Nodes and
unbind all event handers. When deriving from some higher-level widget classes
it will be enough to override the “detatchFromDOM” method and sometimes
even to do nothing (see below).

Interfaces

Using interfaces: Interfaces can be used to check whether a class implements
a certain set of functions. You can create an interface declaration by writing
something like:

2



ETemplate2 JavaScript Documentation

var IBreathingObject = new Interface({

breath: function() {}

});

The construct with the empty function is only to make the interface declaration
look syntactically pleasing, other objects are not allowed inside the interface
declaration.

To make a class extending a interface simply write

var MyClass = new Class.extend([IBreathingObject, ...], {

[...]

});

or in the case of only one interface

var MyClass = Class.extend(IBreathingObject, {

[...]

});

If a class does not implement all functions declared in the interface, it is marked
as abstract and an attempt on creating it will throw an exception.

Extended type check: You can check whether a class/object derrives from a
certain interface by using the implements function (implements does not check
whether the functions are really implemented, just whether the class/object has
been defined with that interface.

Example:

var MyClass = Class.extend(IBreathingObject, {

[...]

});

MyClass.prototype.implements(IBreathingObject); // true

var obj = new MyClass();

obj.implements(IBreathingObject); // true

Implements only checks for interfaces - if you want to check whether an object
is instance of another class or implements a certain interface, you can use the
instanceOf function. In the above example:

obj.instanceOf(Class); // true

obj.instanceOf(MyClass); // true;

obj.instanceOf(IBreathingObject); // true

Attributes

Basic usage: Attributes are used to declare a certain set of variables, get-
ters and setters which are automatically used when (de-)serializing the object.
Additionally the attributes can be used to add some documentation and type

3



ETemplate2 JavaScript Documentation

default value special conversions
string ""

integer 0 strings are parsed to ints
floats 0.0 strings are parsed to floats

boolean false the strings "false", "true", and ""

any null

Table 1: Overview over all available attribute types, their standard default
values and special conversions

safety to the classes. To define attributes, simply add an “attribute”-object to
your class definition:

var MyClass = Class.extend({

attributes: {

"color": {

"name": "Color",

"type": "string",

"default": "red",

"description": "This is just an example"

}

}

});

Default attribute values: When the object is created, after the ”init” func-
tions have been called, the default value of the attribute will be set, without
overriding existing object-variables which have the same name as the attribute.
If no default is given, the default value defaults to an default value defined for
the given type. The type defaults to “any” which means, that no type-check is
done (see Table ). If you do not wish the default value to be automatically set,
set the default value to the “et2 no default” object.

Setters and getters: You can manually set an attribute by calling the func-
tion

obj.setAttribute(name, value);

setAttribute checks for the existance of the attribute with the given name
and typechecks the given value. When setting an attribute, the code checks,
whether a setter function named “set [name]” is found. If yes, the function
is called with the given value as parameter. If the function does not exist, the
following code is executed

obj[name] = value;

You can manually get an attribute by calling the function

obj.getAttribute(name);

Just like the setAttribute function, getAttribute searches for a getter func-
tion named “get [name]” first and simply returns obj[name] if the getter func-

4



ETemplate2 JavaScript Documentation

tion is not found.

Ignoring attributes: Sometimes you may want the setAttribute function
to simply ignore a certain attribute - in ETemplate2 for example, the span
attribute is ignored, as it is read by the grid class. To mark an attribute as
“ignored” simply add:

"ignore": true

to the attribute definition. Setting an attribute to be ignored can also be done
at runtime - but this only effects objects of exactly the same class, as attribute
definitions are copied between prototypes and not referenced.

Attribute inheritance: All classes automatically inherit the attributes of
their parent class. You can change the attribute definition for a new class by
simply defining a new entry for it. The entry can also be partial. So in our above
example, we could simply change the color-attribute to be an integer value, as
e.g. the new class directly uses the binary-representation of the color:

var MyOtherClass = MyClass.extend({

attributes: {

"color": {

"type": "integer"

}

}

});

JS Dependencies: The JS dependency management is done on the server-
side by EGW, so it cannot be used or tested when using the standalone test
method (see below). However, you can mark dependencies by using the

/*egw:uses

jquery.jquery;

et2_baseWidget;

*/

syntax. Note that this comment has to start in the first 16 lines. More infor-
mation on that topic can be found in the preamble of

class.egw include mgr.inc.php

in phpgwapi.

ETemplate2 class structure

Overview

The following UML class diagram (see figure 1) gives an overview over the
ETemplate2 class structure. Basically the widgets form a tree and when loading

5



ETemplate2 JavaScript Documentation

the XET-file, the widget objects are automatically created according to the
XML-Tag. Widget classes can be registered using the

et2_register_widget(class_prototype, array_of_tagnames);

function.

et2 widget

Overview: et2 widget is the base widget class. It spans the widget tree and
introduces features for managing the child widgets, like adding and destryoing
them. The constructor takes to parameters, the parent and the actual tag
name the widget was created for. The tag name is stored in the “type” object-
variable. The widget automatically adds itself to the parent children list and
removes itself from the list when it is destroyed.

XML-Handling: et2 widget has three important functions for XML han-
dling:

et2_widget::loadFromXML(_node)

Reads the attributes for this widget from the given XML-DOM-Node. All child
widgets are created and the LoadFromXML-function is recursively called for
them.

et2_widget::loadAttributes(_attrs)

Is called by LoadFromXML with the XML-DOM-Attributes object. The base
implementation simply calls the “setAttribute” function for every attribute
found.

et2_widget::loadContent(_text)

Is called whenever loadFromXML finds a text-node inside the XML data. The
base implementation does nothing when reaching a text node.

Cloning widgets: et2 widget introduces a mechanism which can be used to
clone widgets and to assign the attributes of other widgets to them. The clone
function

et2_widget::clone(_parent);

takes the parent widget the cloned widget should be added to.

Updating the widget: et2 widget has a function called update which reads
all attributes and setts them again.

et2_widget::update()

This function is e.g. important if you replace the DOM-Node of a widget (see
below) and want to call all attribute setters. The upate function does that
automatically.

6



ETemplate2 JavaScript Documentation

Figure 1: Overview over the ETemplate2 JavaScript side class structure. The
blue classes are the ones you normally derrive other classes from.

7



ETemplate2 JavaScript Documentation

et2 IDOMNode interface

The et2 IDOMNode interface declares the

et2_IDOMNode::getDOMNode(_sender)

function, which has to be implemented by all widgets which have a represen-
tation in the HTML-DOM-Tree. getDOMNode should return the DOM-Node
of the current widget. The return value has to be a plain DOM node, not a
jQuery object. The sender parameter defines which widget is asking for the
DOMNode. Depending on that, the widget may return different nodes. This
is used in the grid or the tab. Normally the sender parameter can be omitted
in most implementations of the getDOMNode function. However, you should
always provide the sender parameter when calling getDOMNode!

et2 DOMWidget

The et2 DOMWidget class is derrived from et2 IDOMNode and et2 widget with-
out implementing the getDOMNode funcition. It introduces an mechanism which
automatically inserts the DOM-Node of this widget into the DOM-Node of the
parent widget (if the parent widget implements et2 IDOMWidget. The two
functions

et2_DOMWidget::attachToDOM()

et2_DOMWidget::detatchFromDOM()

have to be extended by any class which derrives from et2 DOMwidget and at-
taches event-handlers to the DOM. All event handlers have to be detached in
the detatchFromDOM function and (re-)attached in the attachToDOM function.
See the et2 baseWidget statustext-code for an example. The et2 DOMWidget
also automatically sets the id property of its DOM-Node.

Directly derrive a widget from the et2 DOMWidget class, if you have to return
different DOM-Nodes depending on the widget which asked for the DOM-Node
and therefore need an own implementation of the getDOMNode function.

et2 baseWidget

et2 baseWidget, derrived from et2 DOMWidget is in most cases the best choice
whe implementing an widget. It introduces the function

et2_DOMWidget::setDOMNode(_node)

and implements getDOMNode. Calling setDOMNode detatches the current node
from the DOM-Tree and attaches the given node. Very basic widgets only
have to call setDOMNode once in the constructor. Widgets which can change
their underlying DOM-Node can call setDOMNode e.g. from setter functions.
Remember that you have to reapply all changes you’ve made to the DOM-Node,
so probably you’ll have to call update() after having set the new DOM-Node.

8



ETemplate2 JavaScript Documentation

et2 IInput Interface

et2 IInput is the base interface for all widgets which can return a value. The
three functions, which have to be implemented are rather self-explanatory:

et2_IInput::getValue()

et2_IInput::isDirty()

et2_IInput::resetDirty()

et2 inputWidget

The et2 inputWidget derrives from et2 baseWidget and et2 IInput. This class
automatically reads its content from the content-array when its id is set (be-
haviour might be changed). It has a function

et2_inputWidget::getInputWidget()

which as a default returns the DOM-Node of the widget. In more complicated
widgets where the base DOM-Node is not equally to the input-DOM-Node you
can override this function.

The setters and getters for the value attribute of the widget utilize the jQuery
“val()” function for the DOM-Node returned by

et2_inputWidget::getInputWidget()

In some complicated cases it might be better not to derrive directly from
et2 inputWidget but from et2 baseWidget or even et DOMWidget and sim-
ply implement et2 IInput.

Conventions and testing

New widgets should be in their own JS-File named like the widget. They can
by easily tested by including the JS-File inside the file test xml.html found in
the “test” folder. You can simply add new tests using the same scheme as with
the existing tests.

Please always test, whether your widget also works properly if it is wrapped in
a template, as this causes the widget to be cloned, which creates an completely
different situation in comparison to reading the widget directly from XML. A
test XET-File for this may look like that:

<overlay>

<!-- Test without template -->

<mywidget/>

<!-- Test with template -->

<template id="test">

<mywidget/>

</template>

<!-- Reference the template above -->

9



ETemplate2 JavaScript Documentation

<template id="test"/>

</overlay>

There are also many more or less helpfull debug messages in the code, you
can regulate the amout of messages by setting the ET2 DEBUGLEVEL variable in
et2 common.js.

10


