encfs/fs/checkops.cpp

545 lines
13 KiB
C++
Raw Normal View History

/*****************************************************************************
* Author: Valient Gough <vgough@pobox.com>
*
*****************************************************************************
* Copyright (c) 2003, Valient Gough
*
* This library is free software; you can distribute it and/or modify it under
* the terms of the GNU General Public License (GPL), as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GPL in the file COPYING for more
* details.
*
*/
#include "fs/encfs.h"
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <sstream>
#include "base/config.h"
#include "base/Interface.h"
#include "base/Error.h"
#include "cipher/CipherV1.h"
#include "cipher/MemoryPool.h"
#include "fs/DirNode.h"
#include "fs/FileUtils.h"
#include "fs/StreamNameIO.h"
#include "fs/BlockNameIO.h"
#include "fs/NullNameIO.h"
#include <glog/logging.h>
#include <google/protobuf/text_format.h>
#ifdef HAVE_TR1_UNORDERED_SET
#include <tr1/unordered_set>
using std::tr1::unordered_set;
#else
#include <unordered_set>
using std::unordered_set;
#endif
using std::cerr;
using std::string;
using namespace encfs;
namespace encfs {
const int FSBlockSize = 256;
static
int checkErrorPropogation( const shared_ptr<CipherV1> &cipher,
int size, int byteToChange )
{
MemBlock orig;
orig.allocate(size);
MemBlock data;
data.allocate(size);
for(int i=0; i<size; ++i)
{
unsigned char tmp = rand();
orig.data[i] = tmp;
data.data[i] = tmp;
}
if(size != FSBlockSize)
cipher->streamEncode( data.data, size, 0 );
else
cipher->blockEncode( data.data, size, 0 );
// intoduce an error in the encoded data, so we can check error propogation
if(byteToChange >= 0 && byteToChange < size)
{
unsigned char previousValue = data.data[byteToChange];
do
{
data.data[byteToChange] = rand();
} while(data.data[byteToChange] == previousValue);
}
if(size != FSBlockSize)
cipher->streamDecode( data.data, size, 0 );
else
cipher->blockDecode( data.data, size, 0 );
int numByteErrors = 0;
for(int i=0; i<size; ++i)
{
if( data.data[i] != orig.data[i] )
++numByteErrors;
}
return numByteErrors;
}
const char TEST_ROOTDIR[] = "/foo";
static
bool testNameCoding( DirNode &dirNode, bool verbose,
bool collisionTest = false )
{
// encrypt a name
const char *name[] = {
"1234567",
"12345678",
"123456789",
"123456789ABCDEF",
"123456789ABCDEF0",
"123456789ABCDEF01",
"test-name",
"test-name2",
"test",
"../test",
"/foo/bar/blah",
"test-name.21",
"test-name.22",
"test-name.o",
"1.test",
"2.test",
"a/b/c/d",
"a/c/d/e",
"b/c/d/e",
"b/a/c/d",
NULL
};
const char **orig = name;
while(*orig)
{
if(verbose)
cerr << " coding name \"" << *orig << "\"";
string encName = dirNode.relativeCipherPath( *orig );
if(verbose)
cerr << " -> \"" << encName.c_str() << "\"";
// decrypt name
string decName = dirNode.plainPath( encName.c_str() );
if(decName == *orig)
{
if(verbose)
cerr << " OK\n";
} else
{
if(verbose)
cerr << " FAILED (got " << decName << ")\n";
return false;
}
orig++;
}
if (collisionTest)
{
if (verbose)
cerr << "Checking for name collections, this will take a while..\n";
// check for collision rate
char buf[64];
unordered_set<string> encryptedNames;
for (long i=0; i < 10000000; i++)
{
snprintf(buf, sizeof(buf), "%li", i);
string encName = dirNode.relativeCipherPath( buf );
// simulate a case-insisitive filesystem..
std::transform(encName.begin(), encName.end(), encName.begin(),
::toupper);
if (encryptedNames.insert(encName).second == false) {
cerr << "collision detected after " << i << " iterations";
break;
}
}
cerr << "NO collisions detected";
}
return true;
}
bool runTests(const shared_ptr<CipherV1> &cipher, bool verbose)
{
// create a random key
if(verbose)
cerr << "Generating new key, output will be different on each run\n\n";
CipherKey key = cipher->newRandomKey();
if(verbose)
cerr << "Testing key save / restore :";
{
CipherKey encodingKey = cipher->newRandomKey();
int encodedKeySize = cipher->encodedKeySize();
unsigned char *keyBuf = new unsigned char [ encodedKeySize ];
cipher->setKey(encodingKey);
cipher->writeKey( key, keyBuf );
CipherKey key2 = cipher->readKey( keyBuf, true );
delete[] keyBuf;
if(!key2.valid())
{
if(verbose)
cerr << " FAILED (decode error)\n";
return false;
}
if(key == key2)
{
if(verbose)
cerr << " OK\n";
} else
{
if(verbose)
cerr << " FAILED\n";
return false;
}
}
if(verbose)
cerr << "Testing Config interface load / store :";
{
CipherKey encodingKey = cipher->newRandomKey();
int encodedKeySize = cipher->encodedKeySize();
unsigned char *keyBuf = new unsigned char [ encodedKeySize ];
cipher->setKey(encodingKey);
cipher->writeKey( key, keyBuf );
// store in config struct..
EncfsConfig cfg;
cfg.mutable_cipher()->MergeFrom(cipher->interface());
EncryptedKey *encryptedKey = cfg.mutable_key();
encryptedKey->set_size(8 * cipher->keySize());
encryptedKey->set_ciphertext( keyBuf, encodedKeySize );
cfg.set_block_size(FSBlockSize);
delete[] keyBuf;
// save config
string data;
google::protobuf::TextFormat::PrintToString(cfg, &data);
// read back in and check everything..
EncfsConfig cfg2;
google::protobuf::TextFormat::ParseFromString(data, &cfg2);
// check..
rAssert( implements(cfg.cipher(),cfg2.cipher()) );
rAssert( cfg.key().size() == cfg2.key().size() );
rAssert( cfg.block_size() == cfg2.block_size() );
// try decoding key..
CipherKey key2 = cipher->readKey( (unsigned char *)cfg2.key().ciphertext().data(), true );
if(!key2.valid())
{
if(verbose)
cerr << " FAILED (decode error)\n";
return false;
}
if(key == key2)
{
if(verbose)
cerr << " OK\n";
} else
{
if(verbose)
cerr << " FAILED\n";
return false;
}
}
FSConfigPtr fsCfg = FSConfigPtr(new FSConfig);
fsCfg->cipher = cipher;
fsCfg->key = key;
fsCfg->config.reset(new EncfsConfig);
fsCfg->config->set_block_size(FSBlockSize);
fsCfg->opts.reset(new EncFS_Opts);
cipher->setKey(key);
if(verbose)
cerr << "Testing name encode/decode (stream coding w/ IV chaining)\n";
{
fsCfg->opts->idleTracking = false;
fsCfg->config->set_unique_iv(false);
fsCfg->nameCoding.reset( new StreamNameIO(
StreamNameIO::CurrentInterface(), cipher) );
fsCfg->nameCoding->setChainedNameIV( true );
DirNode dirNode( NULL, TEST_ROOTDIR, fsCfg );
if(!testNameCoding( dirNode, verbose ))
return false;
}
if(verbose)
cerr << "Testing name encode/decode (block coding w/ IV chaining)\n";
{
fsCfg->opts->idleTracking = false;
fsCfg->config->set_unique_iv(false);
fsCfg->nameCoding.reset( new BlockNameIO(
BlockNameIO::CurrentInterface(), cipher) );
fsCfg->nameCoding->setChainedNameIV( true );
DirNode dirNode( NULL, TEST_ROOTDIR, fsCfg );
if(!testNameCoding( dirNode, verbose ))
return false;
}
if(verbose)
cerr << "Testing name encode/decode (block coding w/ IV chaining, base32)\n";
{
fsCfg->opts->idleTracking = false;
fsCfg->config->set_unique_iv(false);
fsCfg->nameCoding.reset( new BlockNameIO(
BlockNameIO::CurrentInterface(), cipher) );
fsCfg->nameCoding->setChainedNameIV( true );
DirNode dirNode( NULL, TEST_ROOTDIR, fsCfg );
if(!testNameCoding( dirNode, verbose ))
return false;
}
if(!verbose)
{
{
// test stream mode, this time without IV chaining
fsCfg->nameCoding =
shared_ptr<NameIO>( new StreamNameIO(
StreamNameIO::CurrentInterface(), cipher) );
fsCfg->nameCoding->setChainedNameIV( false );
DirNode dirNode( NULL, TEST_ROOTDIR, fsCfg );
if(!testNameCoding( dirNode, verbose ))
return false;
}
{
// test block mode, this time without IV chaining
fsCfg->nameCoding = shared_ptr<NameIO>( new BlockNameIO(
BlockNameIO::CurrentInterface(), cipher) );
fsCfg->nameCoding->setChainedNameIV( false );
DirNode dirNode( NULL, TEST_ROOTDIR, fsCfg );
if(!testNameCoding( dirNode, verbose ))
return false;
}
}
if(verbose)
cerr << "Testing block encode/decode on full block - ";
{
int numErrors = checkErrorPropogation( cipher,
FSBlockSize, -1 );
if(numErrors)
{
if(verbose)
cerr << " FAILED!\n";
return false;
} else
{
if(verbose)
cerr << " OK\n";
}
}
if(verbose)
cerr << "Testing block encode/decode on partial block - ";
{
int numErrors = checkErrorPropogation( cipher,
FSBlockSize-1, -1 );
if(numErrors)
{
if(verbose)
cerr << " FAILED!\n";
return false;
} else
{
if(verbose)
cerr << " OK\n";
}
}
if(verbose)
cerr << "Checking error propogation in partial block:\n";
{
int minChanges = FSBlockSize-1;
int maxChanges = 0;
int minAt = 0;
int maxAt = 0;
for(int i=0; i<FSBlockSize-1; ++i)
{
int numErrors = checkErrorPropogation( cipher,
FSBlockSize-1, i );
if(numErrors < minChanges)
{
minChanges = numErrors;
minAt = i;
}
if(numErrors > maxChanges)
{
maxChanges = numErrors;
maxAt = i;
}
}
if(verbose)
{
cerr << "modification of 1 byte affected between " << minChanges
<< " and " << maxChanges << " decoded bytes\n";
cerr << "minimum change at byte " << minAt
<< " and maximum at byte " << maxAt << "\n";
}
}
if(verbose)
cerr << "Checking error propogation on full block:\n";
{
int minChanges = FSBlockSize;
int maxChanges = 0;
int minAt = 0;
int maxAt = 0;
for(int i=0; i<FSBlockSize; ++i)
{
int numErrors = checkErrorPropogation( cipher,
FSBlockSize, i );
if(numErrors < minChanges)
{
minChanges = numErrors;
minAt = i;
}
if(numErrors > maxChanges)
{
maxChanges = numErrors;
maxAt = i;
}
}
if(verbose)
{
cerr << "modification of 1 byte affected between " << minChanges
<< " and " << maxChanges << " decoded bytes\n";
cerr << "minimum change at byte " << minAt
<< " and maximum at byte " << maxAt << "\n";
}
}
return true;
}
} // namespace encfs
int main(int argc, char *argv[])
{
FLAGS_logtostderr = 1;
FLAGS_minloglevel = 1;
google::InitGoogleLogging(argv[0]);
google::InstallFailureSignalHandler();
bool isThreaded = false;
CipherV1::init(isThreaded);
srand( time(0) );
// get a list of the available algorithms
std::list<CipherV1::CipherAlgorithm> algorithms =
CipherV1::GetAlgorithmList();
std::list<CipherV1::CipherAlgorithm>::const_iterator it;
cerr << "Supported Crypto interfaces:\n";
for(it = algorithms.begin(); it != algorithms.end(); ++it)
{
cerr << it->name
<< " ( " << it->iface.name() << " "
<< it->iface.major() << ":"
<< it->iface.minor() << ":"
<< it->iface.age() << " ) : " << it->description << "\n";
cerr << " - key length " << it->keyLength.min() << " to "
<< it->keyLength.max() << " , block size " << it->blockSize.min()
<< " to " << it->blockSize.max() << "\n";
}
cerr << "\n";
cerr << "Testing interfaces\n";
for(it = algorithms.begin(); it != algorithms.end(); ++it)
{
int blockSize = it->blockSize.closest( 256 );
for(int keySize = it->keyLength.min(); keySize <= it->keyLength.max();
keySize += it->keyLength.inc())
{
cerr << it->name << ", key length " << keySize
<< ", block size " << blockSize << ": ";
shared_ptr<CipherV1> cipher = CipherV1::New( it->name, keySize );
if(!cipher)
{
cerr << "FAILED TO CREATE\n";
} else
{
try
{
if(runTests( cipher, false ))
cerr << "OK\n";
else
cerr << "FAILED\n";
} catch( Error &er )
{
cerr << "Error: " << er.what() << "\n";
}
}
}
}
// run one test with verbose output too..
shared_ptr<CipherV1> cipher = CipherV1::New("AES", 192);
if(!cipher)
{
cerr << "\nNo AES cipher found, skipping verbose test.\n";
} else
{
cerr << "\nVerbose output for " << cipher->interface().name()
<< " test, key length " << cipher->keySize()*8 << ", block size "
<< FSBlockSize << ":\n";
runTests( cipher, true );
}
CipherV1::shutdown(isThreaded);
return 0;
}