encfs/fs/NameIO.cpp

339 lines
8.0 KiB
C++
Raw Normal View History

/*****************************************************************************
* Author: Valient Gough <vgough@pobox.com>
*
*****************************************************************************
* Copyright (c) 2004, Valient Gough
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "base/config.h"
#include "base/Error.h"
#include "fs/NameIO.h"
#include <glog/logging.h>
#include <map>
#include <cstring>
// for static build. Need to reference the modules which are registered at
// run-time, to ensure that the linker doesn't optimize them away.
#include <iostream>
#include "fs/BlockNameIO.h"
#include "fs/StreamNameIO.h"
#include "fs/NullNameIO.h"
using namespace std;
#define REF_MODULE(TYPE) \
do { \
if(!TYPE::Enabled() ) \
cerr << "referenceModule: should never happen\n"; \
} while(0)
static
void AddSymbolReferences()
{
REF_MODULE(BlockNameIO);
REF_MODULE(StreamNameIO);
REF_MODULE(NullNameIO);
}
struct NameIOAlg
{
bool hidden;
NameIO::Constructor constructor;
string description;
Interface iface;
bool needsStreamMode;
};
typedef multimap< string, NameIOAlg > NameIOMap_t;
static NameIOMap_t *gNameIOMap = 0;
list< NameIO::Algorithm > NameIO::GetAlgorithmList( bool includeHidden )
{
AddSymbolReferences();
list< Algorithm > result;
if(gNameIOMap)
{
NameIOMap_t::const_iterator it;
NameIOMap_t::const_iterator end = gNameIOMap->end();
for(it = gNameIOMap->begin(); it != end; ++it)
{
if(includeHidden || !it->second.hidden)
{
Algorithm tmp;
tmp.name = it->first;
tmp.description = it->second.description;
tmp.iface = it->second.iface;
tmp.needsStreamMode = it->second.needsStreamMode;
result.push_back( tmp );
}
}
}
return result;
}
bool NameIO::Register( const char *name, const char *description,
const Interface &iface, Constructor constructor,
bool needsStreamMode,
bool hidden )
{
if( !gNameIOMap )
gNameIOMap = new NameIOMap_t;
NameIOAlg alg;
alg.hidden = hidden;
alg.constructor = constructor;
alg.description = description;
alg.iface = iface;
alg.needsStreamMode = needsStreamMode;
gNameIOMap->insert( make_pair( string(name), alg ));
return true;
}
shared_ptr<NameIO> NameIO::New( const string &name,
const shared_ptr<Cipher> &cipher, const CipherKey &key)
{
shared_ptr<NameIO> result;
if(gNameIOMap)
{
NameIOMap_t::const_iterator it = gNameIOMap->find( name );
if(it != gNameIOMap->end())
{
Constructor fn = it->second.constructor;
result = (*fn)( it->second.iface, cipher, key );
}
}
return result;
}
shared_ptr<NameIO> NameIO::New( const Interface &iface,
const shared_ptr<Cipher> &cipher, const CipherKey &key )
{
shared_ptr<NameIO> result;
if(gNameIOMap)
{
NameIOMap_t::const_iterator it;
NameIOMap_t::const_iterator end = gNameIOMap->end();
for(it = gNameIOMap->begin(); it != end; ++it)
{
if( implements(it->second.iface, iface ))
{
Constructor fn = it->second.constructor;
result = (*fn)( iface, cipher, key );
break;
}
}
}
return result;
}
NameIO::NameIO()
: chainedNameIV( false ), reverseEncryption( false )
{
}
NameIO::~NameIO()
{
}
void NameIO::setChainedNameIV( bool enable )
{
chainedNameIV = enable;
}
bool NameIO::getChainedNameIV() const
{
return chainedNameIV;
}
void NameIO::setReverseEncryption( bool enable )
{
reverseEncryption = enable;
}
bool NameIO::getReverseEncryption() const
{
return reverseEncryption;
}
std::string NameIO::recodePath( const char *path,
int (NameIO::*_length)(int) const,
int (NameIO::*_code)(const char*, int, uint64_t *, char*) const,
uint64_t *iv ) const
{
string output;
while( *path )
{
if( *path == '/' )
{
if( !output.empty() ) // don't start the string with '/'
output += '/';
++path;
} else
{
bool isDotFile = (*path == '.');
const char *next = strchr( path, '/' );
int len = next ? next - path : strlen( path );
// at this point we know that len > 0
if( isDotFile && (path[len-1] == '.') && (len <= 2) )
{
output.append(len, '.'); // append [len] copies of '.'
path += len;
continue;
}
// figure out buffer sizes
int approxLen = (this->*_length)( len );
if(approxLen <= 0)
throw Error("Filename too small to decode");
BUFFER_INIT( codeBuf, 32, (unsigned int)approxLen+1 );
// code the name
int codedLen = (this->*_code)( path, len, iv, codeBuf );
rAssert( codedLen <= approxLen );
rAssert( codeBuf[codedLen] == '\0' );
path += len;
// append result to string
output += (char*)codeBuf;
BUFFER_RESET( codeBuf );
}
}
return output;
}
std::string NameIO::encodePath( const char *plaintextPath ) const
{
uint64_t iv = 0;
return encodePath( plaintextPath, &iv);
}
std::string NameIO::decodePath( const char *cipherPath ) const
{
uint64_t iv = 0;
return decodePath( cipherPath, &iv );
}
std::string NameIO::_encodePath( const char *plaintextPath, uint64_t *iv ) const
{
// if chaining is not enabled, then the iv pointer is not used..
if(!chainedNameIV)
iv = 0;
return recodePath( plaintextPath,
&NameIO::maxEncodedNameLen, &NameIO::encodeName, iv);
}
std::string NameIO::_decodePath( const char *cipherPath, uint64_t *iv ) const
{
// if chaining is not enabled, then the iv pointer is not used..
if(!chainedNameIV)
iv = 0;
return recodePath( cipherPath,
&NameIO::maxDecodedNameLen, &NameIO::decodeName, iv);
}
std::string NameIO::encodePath( const char *path, uint64_t *iv ) const
{
return getReverseEncryption() ?
_decodePath( path, iv ) :
_encodePath( path, iv );
}
std::string NameIO::decodePath( const char *path, uint64_t *iv ) const
{
return getReverseEncryption() ?
_encodePath( path, iv ) :
_decodePath( path, iv );
}
int NameIO::encodeName( const char *input, int length, char *output ) const
{
return encodeName( input, length, (uint64_t*)0, output );
}
int NameIO::decodeName( const char *input, int length, char *output ) const
{
return decodeName( input, length, (uint64_t*)0, output );
}
std::string NameIO::_encodeName( const char *plaintextName, int length ) const
{
int approxLen = maxEncodedNameLen( length );
BUFFER_INIT( codeBuf, 32, (unsigned int)approxLen+1 );
// code the name
int codedLen = encodeName( plaintextName, length, 0, codeBuf );
rAssert( codedLen <= approxLen );
rAssert( codeBuf[codedLen] == '\0' );
// append result to string
std::string result = (char*)codeBuf;
BUFFER_RESET( codeBuf );
return result;
}
std::string NameIO::_decodeName( const char *encodedName, int length ) const
{
int approxLen = maxDecodedNameLen( length );
BUFFER_INIT( codeBuf, 32, (unsigned int)approxLen+1 );
// code the name
int codedLen = decodeName( encodedName, length, 0, codeBuf );
rAssert( codedLen <= approxLen );
rAssert( codeBuf[codedLen] == '\0' );
// append result to string
std::string result = (char*)codeBuf;
BUFFER_RESET( codeBuf );
return result;
}
std::string NameIO::encodeName( const char *path, int length ) const
{
return getReverseEncryption() ?
_decodeName( path, length ) :
_encodeName( path, length );
}
std::string NameIO::decodeName( const char *path, int length ) const
{
return getReverseEncryption() ?
_encodeName( path, length ) :
_decodeName( path, length );
}