make cipher tests into unit tests

This commit is contained in:
Valient Gough 2017-08-06 18:18:13 -07:00
parent e329d3fef9
commit 0111725d48
No known key found for this signature in database
GPG Key ID: 33C65E29813C14DF

195
encfs/Cipher_test.cpp Normal file
View File

@ -0,0 +1,195 @@
#include "gtest/gtest.h"
#include "BlockNameIO.h"
#include "Cipher.h"
#include "CipherKey.h"
#include "DirNode.h"
#include "FSConfig.h"
#include "FileUtils.h"
#include "StreamNameIO.h"
using namespace encfs;
using namespace testing;
using std::string;
const int FSBlockSize = 256;
const char TEST_ROOTDIR[] = "/foo";
static void testNameCoding(DirNode &dirNode) {
// encrypt a name
const char *name[] = {
"1234567", "12345678", "123456789",
"123456789ABCDEF", "123456789ABCDEF0", "123456789ABCDEF01",
"test-name", "test-name2", "test",
"../test", "/foo/bar/blah", "test-name.21",
"test-name.22", "test-name.o", "1.test",
"2.test", "a/b/c/d", "a/c/d/e",
"b/c/d/e", "b/a/c/d", NULL};
const char **orig = name;
while (*orig) {
string encName = dirNode.relativeCipherPath(*orig);
// decrypt name
string decName = dirNode.plainPath(encName.c_str());
ASSERT_EQ(decName, *orig);
orig++;
}
}
class CipherTest : public TestWithParam<Cipher::CipherAlgorithm> {
protected:
virtual void SetUp() {
Cipher::CipherAlgorithm alg = GetParam();
cipher = Cipher::New(alg.name, alg.keyLength.closest(256));
}
virtual void TearDown() {}
std::shared_ptr<Cipher> cipher;
};
TEST_P(CipherTest, SaveRestoreKey) {
auto key = cipher->newRandomKey();
auto encodingKey = cipher->newRandomKey();
int encodedKeySize = cipher->encodedKeySize();
unsigned char keyBuf[encodedKeySize];
cipher->writeKey(key, keyBuf, encodingKey);
auto restored = cipher->readKey(keyBuf, encodingKey);
EXPECT_TRUE(restored);
EXPECT_TRUE(cipher->compareKey(key, restored));
}
TEST_P(CipherTest, NameStreamEncoding) {
auto key = cipher->newRandomKey();
FSConfigPtr fsCfg = FSConfigPtr(new FSConfig);
fsCfg->cipher = cipher;
fsCfg->key = key;
fsCfg->config.reset(new EncFSConfig);
fsCfg->config->blockSize = FSBlockSize;
fsCfg->opts.reset(new EncFS_Opts);
fsCfg->opts->idleTracking = false;
fsCfg->config->uniqueIV = false;
fsCfg->nameCoding.reset(
new StreamNameIO(StreamNameIO::CurrentInterface(), cipher, key));
{
fsCfg->nameCoding->setChainedNameIV(true);
DirNode dirNode(NULL, TEST_ROOTDIR, fsCfg);
testNameCoding(dirNode);
}
{
fsCfg->nameCoding->setChainedNameIV(false);
DirNode dirNode(NULL, TEST_ROOTDIR, fsCfg);
testNameCoding(dirNode);
}
}
TEST_P(CipherTest, NameBlockEncoding) {
auto key = cipher->newRandomKey();
FSConfigPtr fsCfg = FSConfigPtr(new FSConfig);
fsCfg->cipher = cipher;
fsCfg->key = key;
fsCfg->config.reset(new EncFSConfig);
fsCfg->config->blockSize = FSBlockSize;
fsCfg->opts.reset(new EncFS_Opts);
fsCfg->opts->idleTracking = false;
fsCfg->config->uniqueIV = false;
fsCfg->nameCoding.reset(new BlockNameIO(
BlockNameIO::CurrentInterface(), cipher, key, cipher->cipherBlockSize()));
{
fsCfg->nameCoding->setChainedNameIV(true);
DirNode dirNode(NULL, TEST_ROOTDIR, fsCfg);
testNameCoding(dirNode);
}
{
fsCfg->nameCoding->setChainedNameIV(false);
DirNode dirNode(NULL, TEST_ROOTDIR, fsCfg);
testNameCoding(dirNode);
}
}
TEST_P(CipherTest, NameBlockBase32Encoding) {
auto key = cipher->newRandomKey();
FSConfigPtr fsCfg = FSConfigPtr(new FSConfig);
fsCfg->cipher = cipher;
fsCfg->key = key;
fsCfg->config.reset(new EncFSConfig);
fsCfg->config->blockSize = FSBlockSize;
fsCfg->opts.reset(new EncFS_Opts);
fsCfg->opts->idleTracking = false;
fsCfg->config->uniqueIV = false;
fsCfg->nameCoding.reset(new BlockNameIO(BlockNameIO::CurrentInterface(),
cipher, key,
cipher->cipherBlockSize(), true));
{
fsCfg->nameCoding->setChainedNameIV(true);
DirNode dirNode(NULL, TEST_ROOTDIR, fsCfg);
testNameCoding(dirNode);
}
{
fsCfg->nameCoding->setChainedNameIV(false);
DirNode dirNode(NULL, TEST_ROOTDIR, fsCfg);
testNameCoding(dirNode);
}
}
TEST_P(CipherTest, ConfigLoadStore) {
auto key = cipher->newRandomKey();
CipherKey encodingKey = cipher->newRandomKey();
int encodedKeySize = cipher->encodedKeySize();
unsigned char keyBuf[encodedKeySize];
cipher->writeKey(key, keyBuf, encodingKey);
// store in config struct..
EncFSConfig cfg;
cfg.cipherIface = cipher->interface();
cfg.keySize = 8 * cipher->keySize();
cfg.blockSize = FSBlockSize;
cfg.assignKeyData(keyBuf, encodedKeySize);
// save config
// Creation of a temporary file should be more platform independent. On
// c++17 we could use std::filesystem.
std::string name = "/tmp/encfstestXXXXXX";
int tmpFd = mkstemp(&name[0]);
EXPECT_GE(tmpFd, 0);
// mkstemp opens the temporary file, but we only need its name -> close it
EXPECT_EQ(close(tmpFd), 0);
{
auto ok = writeV6Config(name.c_str(), &cfg);
EXPECT_TRUE(ok);
}
// read back in and check everything..
EncFSConfig cfg2;
{
auto ok = readV6Config(name.c_str(), &cfg2, nullptr);
EXPECT_TRUE(ok);
}
// delete the temporary file where we stored the config
EXPECT_EQ(unlink(name.c_str()), 0);
// check..
EXPECT_TRUE(cfg.cipherIface.implements(cfg2.cipherIface));
EXPECT_EQ(cfg.keySize, cfg2.keySize);
EXPECT_EQ(cfg.blockSize, cfg2.blockSize);
// try decoding key..
CipherKey key2 = cipher->readKey(cfg2.getKeyData(), encodingKey);
EXPECT_TRUE(key2);
EXPECT_TRUE(cipher->compareKey(key, key2));
}
INSTANTIATE_TEST_CASE_P(CipherKey, CipherTest,
ValuesIn(Cipher::GetAlgorithmList()));