mirror of
https://github.com/vgough/encfs.git
synced 2025-08-13 23:48:59 +02:00
reformat with clang-format -style=Google
git-svn-id: http://encfs.googlecode.com/svn/trunk@121 db9cf616-1c43-0410-9cb8-a902689de0d6
This commit is contained in:
@ -7,7 +7,7 @@
|
||||
* This program is free software: you can redistribute it and/or modify it
|
||||
* under the terms of the GNU Lesser General Public License as published by the
|
||||
* Free Software Foundation, either version 3 of the License, or (at your
|
||||
* option) any later version.
|
||||
* option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
@ -59,15 +59,12 @@ using std::vector;
|
||||
|
||||
namespace encfs {
|
||||
|
||||
const int MAX_KEYLENGTH = 64; // in bytes (256 bit)
|
||||
const int MAX_KEYLENGTH = 64; // in bytes (256 bit)
|
||||
const int MAX_IVLENGTH = 16;
|
||||
const int KEY_CHECKSUM_BYTES = 4;
|
||||
|
||||
#ifndef MIN
|
||||
inline int MIN(int a, int b)
|
||||
{
|
||||
return (a < b) ? a : b;
|
||||
}
|
||||
inline int MIN(int a, int b) { return (a < b) ? a : b; }
|
||||
#endif
|
||||
|
||||
void CipherV1::init(bool threaded) {
|
||||
@ -91,118 +88,101 @@ void CipherV1::shutdown(bool threaded) {
|
||||
This duplicated some code in OpenSSL, correcting an issue with key lengths
|
||||
produced for Blowfish.
|
||||
*/
|
||||
bool BytesToKey(const byte *data, int dataLen,
|
||||
unsigned int rounds, CipherKey *key)
|
||||
{
|
||||
bool BytesToKey(const byte *data, int dataLen, unsigned int rounds,
|
||||
CipherKey *key) {
|
||||
Registry<MAC> registry = MAC::GetRegistry();
|
||||
shared_ptr<MAC> sha1(registry.CreateForMatch("SHA-1"));
|
||||
if (!sha1)
|
||||
return false;
|
||||
if (!sha1) return false;
|
||||
|
||||
if( data == NULL || dataLen == 0 )
|
||||
return false; // OpenSSL returns nkey here, but why? It is a failure..
|
||||
if (data == NULL || dataLen == 0)
|
||||
return false; // OpenSSL returns nkey here, but why? It is a failure..
|
||||
|
||||
SecureMem mdBuf( sha1->outputSize() );
|
||||
SecureMem mdBuf(sha1->outputSize());
|
||||
int addmd = 0;
|
||||
int remaining = key->size();
|
||||
|
||||
for(;;)
|
||||
{
|
||||
for (;;) {
|
||||
sha1->init();
|
||||
if( addmd++ )
|
||||
sha1->update(mdBuf.data(), mdBuf.size());
|
||||
if (addmd++) sha1->update(mdBuf.data(), mdBuf.size());
|
||||
sha1->update(data, dataLen);
|
||||
sha1->write(mdBuf.data());
|
||||
|
||||
for(unsigned int i=1; i < rounds; ++i)
|
||||
{
|
||||
for (unsigned int i = 1; i < rounds; ++i) {
|
||||
sha1->init();
|
||||
sha1->update(mdBuf.data(), mdBuf.size());
|
||||
sha1->write(mdBuf.data());
|
||||
}
|
||||
|
||||
int offset = 0;
|
||||
int toCopy = MIN( remaining, mdBuf.size() - offset );
|
||||
if( toCopy )
|
||||
{
|
||||
memcpy( key->data(), mdBuf.data()+offset, toCopy );
|
||||
int toCopy = MIN(remaining, mdBuf.size() - offset);
|
||||
if (toCopy) {
|
||||
memcpy(key->data(), mdBuf.data() + offset, toCopy);
|
||||
key += toCopy;
|
||||
remaining -= toCopy;
|
||||
offset += toCopy;
|
||||
}
|
||||
if(remaining == 0) break;
|
||||
if (remaining == 0) break;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
long time_diff(const timeval &end, const timeval &start)
|
||||
{
|
||||
long time_diff(const timeval &end, const timeval &start) {
|
||||
return (end.tv_sec - start.tv_sec) * 1000 * 1000 +
|
||||
(end.tv_usec - start.tv_usec);
|
||||
(end.tv_usec - start.tv_usec);
|
||||
}
|
||||
|
||||
int CipherV1::TimedPBKDF2(const char *pass, int passlen,
|
||||
const byte *salt, int saltlen,
|
||||
CipherKey *key, long desiredPDFTime)
|
||||
{
|
||||
int CipherV1::TimedPBKDF2(const char *pass, int passlen, const byte *salt,
|
||||
int saltlen, CipherKey *key, long desiredPDFTime) {
|
||||
#ifdef HAVE_VALGRIND_MEMCHECK_H
|
||||
VALGRIND_CHECK_MEM_IS_DEFINED(pass, passlen);
|
||||
VALGRIND_CHECK_MEM_IS_DEFINED(salt, saltlen);
|
||||
#endif
|
||||
Registry<PBKDF> registry = PBKDF::GetRegistry();
|
||||
shared_ptr<PBKDF> impl(registry.CreateForMatch(NAME_PBKDF2_HMAC_SHA1));
|
||||
if (!impl)
|
||||
return -1;
|
||||
if (!impl) return -1;
|
||||
|
||||
int iter = 1000;
|
||||
timeval start, end;
|
||||
|
||||
for(;;)
|
||||
{
|
||||
gettimeofday( &start, 0 );
|
||||
if (!impl->makeKey(pass, passlen, salt, saltlen, iter, key))
|
||||
return -1;
|
||||
for (;;) {
|
||||
gettimeofday(&start, 0);
|
||||
if (!impl->makeKey(pass, passlen, salt, saltlen, iter, key)) return -1;
|
||||
|
||||
gettimeofday( &end, 0 );
|
||||
gettimeofday(&end, 0);
|
||||
|
||||
long delta = time_diff(end, start);
|
||||
if(delta < desiredPDFTime / 8)
|
||||
{
|
||||
if (delta < desiredPDFTime / 8) {
|
||||
iter *= 4;
|
||||
} else if(delta < (5 * desiredPDFTime / 6))
|
||||
{
|
||||
} else if (delta < (5 * desiredPDFTime / 6)) {
|
||||
// estimate number of iterations to get close to desired time
|
||||
iter = (int)((double)iter * (double)desiredPDFTime
|
||||
/ (double)delta);
|
||||
iter = (int)((double)iter * (double)desiredPDFTime / (double)delta);
|
||||
} else
|
||||
return iter;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// - Version 1:0 used EVP_BytesToKey, which didn't do the right thing for
|
||||
// Blowfish key lengths > 128 bit.
|
||||
// - Version 2:0 uses BytesToKey.
|
||||
// - Version 2:0 uses BytesToKey.
|
||||
// We support both 2:0 and 1:0, hence current:revision:age = 2:0:1
|
||||
// - Version 2:1 adds support for Message Digest function interface
|
||||
// - Version 2:2 adds PBKDF2 for password derivation
|
||||
// - Version 3:0 adds a new IV mechanism
|
||||
// - Version 3:1 drops support for verison 1:0 blowfish keys, in order to avoid
|
||||
// having to duplicate the behavior of old EVP_BytesToKey implementations.
|
||||
static Interface BlowfishInterface = makeInterface( "ssl/blowfish", 3, 1, 1 );
|
||||
static Interface AESInterface = makeInterface( "ssl/aes", 3, 1, 2 );
|
||||
static Interface BlowfishInterface = makeInterface("ssl/blowfish", 3, 1, 1);
|
||||
static Interface AESInterface = makeInterface("ssl/aes", 3, 1, 2);
|
||||
|
||||
static Interface NullCipherInterface = makeInterface( "nullCipher", 1, 0, 0);
|
||||
static Interface NullCipherInterface = makeInterface("nullCipher", 1, 0, 0);
|
||||
|
||||
static Range BFKeyRange(128,256,32);
|
||||
static Range BFKeyRange(128, 256, 32);
|
||||
static int BFDefaultKeyLen = 160;
|
||||
|
||||
static Range AESKeyRange(128,256,64);
|
||||
static Range AESKeyRange(128, 256, 64);
|
||||
static int AESDefaultKeyLen = 192;
|
||||
|
||||
list<CipherV1::CipherAlgorithm> CipherV1::GetAlgorithmList()
|
||||
{
|
||||
list<CipherV1::CipherAlgorithm> CipherV1::GetAlgorithmList() {
|
||||
list<CipherV1::CipherAlgorithm> result;
|
||||
Registry<BlockCipher> blockCipherRegistry = BlockCipher::GetRegistry();
|
||||
|
||||
@ -213,7 +193,7 @@ list<CipherV1::CipherAlgorithm> CipherV1::GetAlgorithmList()
|
||||
alg.iface = AESInterface;
|
||||
alg.keyLength = AESKeyRange;
|
||||
alg.blockSize = Range(64, 4096, 16);
|
||||
result.push_back(alg);
|
||||
result.push_back(alg);
|
||||
}
|
||||
|
||||
if (blockCipherRegistry.GetPropertiesForMatch(NAME_BLOWFISH_CBC) != NULL) {
|
||||
@ -223,7 +203,7 @@ list<CipherV1::CipherAlgorithm> CipherV1::GetAlgorithmList()
|
||||
alg.iface = BlowfishInterface;
|
||||
alg.keyLength = BFKeyRange;
|
||||
alg.blockSize = Range(64, 4096, 8);
|
||||
result.push_back(alg);
|
||||
result.push_back(alg);
|
||||
}
|
||||
|
||||
CipherV1::CipherAlgorithm alg;
|
||||
@ -232,15 +212,14 @@ list<CipherV1::CipherAlgorithm> CipherV1::GetAlgorithmList()
|
||||
alg.iface = NullCipherInterface;
|
||||
alg.keyLength = Range(0);
|
||||
alg.blockSize = Range(64, 4096, 8);
|
||||
result.push_back(alg);
|
||||
|
||||
result.push_back(alg);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
shared_ptr<CipherV1> CipherV1::New(const std::string& name, int keyLen) {
|
||||
shared_ptr<CipherV1> CipherV1::New(const std::string &name, int keyLen) {
|
||||
for (auto &it : GetAlgorithmList()) {
|
||||
if (it.name == name)
|
||||
return New(it.iface, keyLen);
|
||||
if (it.name == name) return New(it.iface, keyLen);
|
||||
}
|
||||
|
||||
return shared_ptr<CipherV1>();
|
||||
@ -248,18 +227,14 @@ shared_ptr<CipherV1> CipherV1::New(const std::string& name, int keyLen) {
|
||||
|
||||
shared_ptr<CipherV1> CipherV1::New(const Interface &iface, int keyLen) {
|
||||
shared_ptr<CipherV1> result(new CipherV1());
|
||||
if (!result->initCiphers(iface, iface, keyLen))
|
||||
result.reset();
|
||||
if (!result->initCiphers(iface, iface, keyLen)) result.reset();
|
||||
return result;
|
||||
}
|
||||
|
||||
CipherV1::CipherV1()
|
||||
{
|
||||
}
|
||||
CipherV1::CipherV1() {}
|
||||
|
||||
bool CipherV1::initCiphers(const Interface &iface, const Interface &realIface,
|
||||
int keyLength)
|
||||
{
|
||||
int keyLength) {
|
||||
this->iface = iface;
|
||||
this->realIface = realIface;
|
||||
|
||||
@ -270,21 +245,20 @@ bool CipherV1::initCiphers(const Interface &iface, const Interface &realIface,
|
||||
Range keyRange;
|
||||
|
||||
if (implements(AESInterface, iface)) {
|
||||
keyRange = AESKeyRange;
|
||||
keyRange = AESKeyRange;
|
||||
defaultKeyLength = AESDefaultKeyLen;
|
||||
_blockCipher.reset( blockCipherRegistry.CreateForMatch(NAME_AES_CBC) );
|
||||
_streamCipher.reset( streamCipherRegistry.CreateForMatch(NAME_AES_CFB) );
|
||||
_blockCipher.reset(blockCipherRegistry.CreateForMatch(NAME_AES_CBC));
|
||||
_streamCipher.reset(streamCipherRegistry.CreateForMatch(NAME_AES_CFB));
|
||||
} else if (implements(BlowfishInterface, iface)) {
|
||||
keyRange = BFKeyRange;
|
||||
defaultKeyLength = BFDefaultKeyLen;
|
||||
_blockCipher.reset( blockCipherRegistry.CreateForMatch(NAME_BLOWFISH_CBC) );
|
||||
_streamCipher.reset( streamCipherRegistry.CreateForMatch
|
||||
(NAME_BLOWFISH_CFB) );
|
||||
_blockCipher.reset(blockCipherRegistry.CreateForMatch(NAME_BLOWFISH_CBC));
|
||||
_streamCipher.reset(streamCipherRegistry.CreateForMatch(NAME_BLOWFISH_CFB));
|
||||
} else if (implements(NullCipherInterface, iface)) {
|
||||
keyRange = Range(0);
|
||||
defaultKeyLength = 0;
|
||||
_blockCipher.reset( blockCipherRegistry.CreateForMatch("NullCipher") );
|
||||
_streamCipher.reset( streamCipherRegistry.CreateForMatch("NullCipher") );
|
||||
_blockCipher.reset(blockCipherRegistry.CreateForMatch("NullCipher"));
|
||||
_streamCipher.reset(streamCipherRegistry.CreateForMatch("NullCipher"));
|
||||
}
|
||||
|
||||
if (!_blockCipher || !_streamCipher) {
|
||||
@ -297,8 +271,7 @@ bool CipherV1::initCiphers(const Interface &iface, const Interface &realIface,
|
||||
else
|
||||
_keySize = keyRange.closest(keyLength) / 8;
|
||||
|
||||
_pbkdf.reset(PBKDF::GetRegistry().CreateForMatch(
|
||||
NAME_PBKDF2_HMAC_SHA1));
|
||||
_pbkdf.reset(PBKDF::GetRegistry().CreateForMatch(NAME_PBKDF2_HMAC_SHA1));
|
||||
if (!_pbkdf) {
|
||||
LOG(ERROR) << "PBKDF missing";
|
||||
return false;
|
||||
@ -322,14 +295,9 @@ bool CipherV1::initCiphers(const Interface &iface, const Interface &realIface,
|
||||
return true;
|
||||
}
|
||||
|
||||
CipherV1::~CipherV1()
|
||||
{
|
||||
}
|
||||
CipherV1::~CipherV1() {}
|
||||
|
||||
Interface CipherV1::interface() const
|
||||
{
|
||||
return realIface;
|
||||
}
|
||||
Interface CipherV1::interface() const { return realIface; }
|
||||
|
||||
/*
|
||||
Create a key from the password.
|
||||
@ -340,33 +308,27 @@ Interface CipherV1::interface() const
|
||||
*/
|
||||
CipherKey CipherV1::newKey(const char *password, int passwdLength,
|
||||
int *iterationCount, long desiredDuration,
|
||||
const byte *salt, int saltLen)
|
||||
{
|
||||
const byte *salt, int saltLen) {
|
||||
#ifdef HAVE_VALGRIND_MEMCHECK_H
|
||||
VALGRIND_CHECK_MEM_IS_DEFINED(password, passwdLength);
|
||||
VALGRIND_CHECK_MEM_IS_DEFINED(salt, saltLen);
|
||||
#endif
|
||||
CipherKey key(_keySize + _ivLength);
|
||||
|
||||
if(*iterationCount == 0)
|
||||
{
|
||||
if (*iterationCount == 0) {
|
||||
// timed run, fills in iteration count
|
||||
int res = TimedPBKDF2(password, passwdLength,
|
||||
salt, saltLen, &key,
|
||||
int res = TimedPBKDF2(password, passwdLength, salt, saltLen, &key,
|
||||
1000 * desiredDuration);
|
||||
if(res <= 0)
|
||||
{
|
||||
if (res <= 0) {
|
||||
LOG(ERROR) << "openssl error, PBKDF2 failed";
|
||||
return CipherKey();
|
||||
} else {
|
||||
*iterationCount = res;
|
||||
}
|
||||
} else
|
||||
{
|
||||
} else {
|
||||
// known iteration length
|
||||
if (!_pbkdf->makeKey(password, passwdLength,
|
||||
salt, saltLen, *iterationCount, &key))
|
||||
{
|
||||
if (!_pbkdf->makeKey(password, passwdLength, salt, saltLen, *iterationCount,
|
||||
&key)) {
|
||||
LOG(ERROR) << "openssl error, PBKDF2 failed";
|
||||
return CipherKey();
|
||||
}
|
||||
@ -378,8 +340,7 @@ CipherKey CipherV1::newKey(const char *password, int passwdLength,
|
||||
// Deprecated - for use only with filesystems which used a fixed-round PBKDF.
|
||||
// Such configurations are replaced with a new PBKDF2 implementation when the
|
||||
// password is changed or configuration is rewritten.
|
||||
CipherKey CipherV1::newKey(const char *password, int passwdLength)
|
||||
{
|
||||
CipherKey CipherV1::newKey(const char *password, int passwdLength) {
|
||||
#ifdef HAVE_VALGRIND_MEMCHECK_H
|
||||
VALGRIND_CHECK_MEM_IS_DEFINED(password, passwdLength);
|
||||
#endif
|
||||
@ -387,37 +348,33 @@ CipherKey CipherV1::newKey(const char *password, int passwdLength)
|
||||
|
||||
bool ok = BytesToKey((byte *)password, passwdLength, 16, &key);
|
||||
LOG_IF(ERROR, !ok) << "newKey: BytesToKey failed";
|
||||
if (!ok)
|
||||
throw Error("BytesToKey failed");
|
||||
if (!ok) throw Error("BytesToKey failed");
|
||||
|
||||
return key;
|
||||
}
|
||||
|
||||
CipherKey CipherV1::newRandomKey()
|
||||
{
|
||||
CipherKey CipherV1::newRandomKey() {
|
||||
return _pbkdf->randomKey(_keySize + _ivLength);
|
||||
}
|
||||
|
||||
bool CipherV1::pseudoRandomize( byte *buf, int len )
|
||||
{
|
||||
bool CipherV1::pseudoRandomize(byte *buf, int len) {
|
||||
return _pbkdf->pseudoRandom(buf, len);
|
||||
}
|
||||
|
||||
bool CipherV1::setKey(const CipherKey &keyIv) {
|
||||
Lock l(_hmacMutex);
|
||||
|
||||
LOG_IF(ERROR, (int)(_keySize + _ivLength) != keyIv.size())
|
||||
<< "Mismatched key size: passed "
|
||||
<< keyIv.size() << ", expecting " << _keySize;
|
||||
LOG_IF(ERROR, (int)(_keySize + _ivLength) != keyIv.size())
|
||||
<< "Mismatched key size: passed " << keyIv.size() << ", expecting "
|
||||
<< _keySize;
|
||||
|
||||
// Key is actually key plus iv, so extract the different parts.
|
||||
CipherKey key(_keySize);
|
||||
memcpy(key.data(), keyIv.data(), _keySize);
|
||||
memcpy(_iv->data(), keyIv.data() + _keySize, _ivLength);
|
||||
|
||||
if (_blockCipher->setKey(key)
|
||||
&& _streamCipher->setKey(key)
|
||||
&& _hmac->setKey(key)) {
|
||||
if (_blockCipher->setKey(key) && _streamCipher->setKey(key) &&
|
||||
_hmac->setKey(key)) {
|
||||
_keySet = true;
|
||||
return true;
|
||||
}
|
||||
@ -426,24 +383,21 @@ bool CipherV1::setKey(const CipherKey &keyIv) {
|
||||
}
|
||||
|
||||
uint64_t CipherV1::MAC_64(const byte *data, int len,
|
||||
uint64_t *chainedIV ) const
|
||||
{
|
||||
rAssert( len > 0 );
|
||||
rAssert( _keySet );
|
||||
uint64_t *chainedIV) const {
|
||||
rAssert(len > 0);
|
||||
rAssert(_keySet);
|
||||
|
||||
byte md[_hmac->outputSize()];
|
||||
|
||||
|
||||
Lock l(_hmacMutex);
|
||||
|
||||
_hmac->init();
|
||||
_hmac->update(data, len);
|
||||
if(chainedIV)
|
||||
{
|
||||
if (chainedIV) {
|
||||
// toss in the chained IV as well
|
||||
uint64_t tmp = *chainedIV;
|
||||
byte h[8];
|
||||
for(unsigned int i=0; i<8; ++i)
|
||||
{
|
||||
for (unsigned int i = 0; i < 8; ++i) {
|
||||
h[i] = tmp & 0xff;
|
||||
tmp >>= 8;
|
||||
}
|
||||
@ -455,174 +409,151 @@ uint64_t CipherV1::MAC_64(const byte *data, int len,
|
||||
rAssert(ok);
|
||||
|
||||
// chop this down to a 64bit value..
|
||||
byte h[8] = {0,0,0,0,0,0,0,0};
|
||||
byte h[8] = {0, 0, 0, 0, 0, 0, 0, 0};
|
||||
|
||||
// XXX: the last byte off the hmac isn't used. This minor inconsistency
|
||||
// must be maintained in order to maintain backward compatiblity with earlier
|
||||
// releases.
|
||||
for(int i=0; i<_hmac->outputSize()-1; ++i)
|
||||
h[i%8] ^= (byte)(md[i]);
|
||||
for (int i = 0; i < _hmac->outputSize() - 1; ++i) h[i % 8] ^= (byte)(md[i]);
|
||||
|
||||
uint64_t value = (uint64_t)h[0];
|
||||
for(int i=1; i<8; ++i)
|
||||
value = (value << 8) | (uint64_t)h[i];
|
||||
for (int i = 1; i < 8; ++i) value = (value << 8) | (uint64_t)h[i];
|
||||
|
||||
// TODO: should not be here.
|
||||
if(chainedIV)
|
||||
*chainedIV = value;
|
||||
if (chainedIV) *chainedIV = value;
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
unsigned int CipherV1::reduceMac32(uint64_t mac64)
|
||||
{
|
||||
unsigned int CipherV1::reduceMac32(uint64_t mac64) {
|
||||
return ((mac64 >> 32) & 0xffffffff) ^ (mac64 & 0xffffffff);
|
||||
}
|
||||
|
||||
unsigned int CipherV1::reduceMac16(uint64_t mac64)
|
||||
{
|
||||
unsigned int CipherV1::reduceMac16(uint64_t mac64) {
|
||||
unsigned int mac32 = reduceMac32(mac64);
|
||||
return ((mac32 >> 16) & 0xffff) ^ (mac32 & 0xffff);
|
||||
}
|
||||
|
||||
CipherKey CipherV1::readKey(const byte *data, bool checkKey)
|
||||
{
|
||||
rAssert( _keySet );
|
||||
CipherKey CipherV1::readKey(const byte *data, bool checkKey) {
|
||||
rAssert(_keySet);
|
||||
CipherKey key(_keySize + _ivLength);
|
||||
|
||||
// First N bytes are checksum bytes.
|
||||
unsigned int checksum = 0;
|
||||
for(int i=0; i<KEY_CHECKSUM_BYTES; ++i)
|
||||
for (int i = 0; i < KEY_CHECKSUM_BYTES; ++i)
|
||||
checksum = (checksum << 8) | (unsigned int)data[i];
|
||||
|
||||
memcpy( key.data(), data+KEY_CHECKSUM_BYTES, key.size() );
|
||||
memcpy(key.data(), data + KEY_CHECKSUM_BYTES, key.size());
|
||||
if (!streamDecode(key.data(), key.size(), checksum)) {
|
||||
LOG(ERROR) << "stream decode failure";
|
||||
return CipherKey();
|
||||
}
|
||||
|
||||
// check for success
|
||||
// check for success
|
||||
#ifdef HAVE_VALGRIND_MEMCHECK_H
|
||||
VALGRIND_CHECK_MEM_IS_DEFINED(key.data(), key.size());
|
||||
#endif
|
||||
|
||||
unsigned int checksum2 = reduceMac32(
|
||||
MAC_64( key.data(), key.size(), NULL ));
|
||||
unsigned int checksum2 = reduceMac32(MAC_64(key.data(), key.size(), NULL));
|
||||
|
||||
#ifdef HAVE_VALGRIND_MEMCHECK_H
|
||||
VALGRIND_CHECK_VALUE_IS_DEFINED(checksum2);
|
||||
VALGRIND_CHECK_VALUE_IS_DEFINED(checksum);
|
||||
#endif
|
||||
|
||||
if(checkKey && (checksum2 != checksum))
|
||||
{
|
||||
LOG(INFO) << "checksum mismatch: expected " << checksum
|
||||
<< ", got " << checksum2
|
||||
<< "on decode of " << _keySize + _ivLength << " bytes";
|
||||
if (checkKey && (checksum2 != checksum)) {
|
||||
LOG(INFO) << "checksum mismatch: expected " << checksum << ", got "
|
||||
<< checksum2 << "on decode of " << _keySize + _ivLength
|
||||
<< " bytes";
|
||||
return CipherKey();
|
||||
}
|
||||
|
||||
return key;
|
||||
}
|
||||
|
||||
void CipherV1::writeKey(const CipherKey &ckey, byte *out)
|
||||
{
|
||||
rAssert( _keySet );
|
||||
void CipherV1::writeKey(const CipherKey &ckey, byte *out) {
|
||||
rAssert(_keySet);
|
||||
|
||||
SecureMem tmpBuf(ckey.size());
|
||||
memcpy(tmpBuf.data(), ckey.data(), tmpBuf.size());
|
||||
|
||||
unsigned int checksum = reduceMac32(
|
||||
MAC_64(tmpBuf.data(), tmpBuf.size(), NULL));
|
||||
unsigned int checksum =
|
||||
reduceMac32(MAC_64(tmpBuf.data(), tmpBuf.size(), NULL));
|
||||
streamEncode(tmpBuf.data(), tmpBuf.size(), checksum);
|
||||
|
||||
// first N bytes contain HMAC derived checksum..
|
||||
for(int i=1; i<=KEY_CHECKSUM_BYTES; ++i)
|
||||
{
|
||||
out[KEY_CHECKSUM_BYTES-i] = checksum & 0xff;
|
||||
for (int i = 1; i <= KEY_CHECKSUM_BYTES; ++i) {
|
||||
out[KEY_CHECKSUM_BYTES - i] = checksum & 0xff;
|
||||
checksum >>= 8;
|
||||
}
|
||||
|
||||
memcpy( out+KEY_CHECKSUM_BYTES, tmpBuf.data(), tmpBuf.size() );
|
||||
memcpy(out + KEY_CHECKSUM_BYTES, tmpBuf.data(), tmpBuf.size());
|
||||
}
|
||||
|
||||
std::string CipherV1::encodeAsString(const CipherKey &key)
|
||||
{
|
||||
rAssert( _keySet );
|
||||
std::string CipherV1::encodeAsString(const CipherKey &key) {
|
||||
rAssert(_keySet);
|
||||
int encodedSize = encodedKeySize();
|
||||
vector<byte> buf(encodedSize);
|
||||
writeKey(key, buf.data());
|
||||
|
||||
int b64Len = B256ToB64Bytes( encodedSize );
|
||||
int b64Len = B256ToB64Bytes(encodedSize);
|
||||
byte *b64Key = new byte[b64Len + 1];
|
||||
|
||||
changeBase2( buf.data(), encodedSize, 8, b64Key, b64Len, 6);
|
||||
B64ToAscii( b64Key, b64Len );
|
||||
b64Key[ b64Len - 1 ] = '\0';
|
||||
changeBase2(buf.data(), encodedSize, 8, b64Key, b64Len, 6);
|
||||
B64ToAscii(b64Key, b64Len);
|
||||
b64Key[b64Len - 1] = '\0';
|
||||
|
||||
return string( (const char *)b64Key );
|
||||
return string((const char *)b64Key);
|
||||
}
|
||||
|
||||
int CipherV1::encodedKeySize() const
|
||||
{
|
||||
int CipherV1::encodedKeySize() const {
|
||||
return _keySize + _ivLength + KEY_CHECKSUM_BYTES;
|
||||
}
|
||||
|
||||
int CipherV1::keySize() const
|
||||
{
|
||||
return _keySize;
|
||||
}
|
||||
int CipherV1::keySize() const { return _keySize; }
|
||||
|
||||
int CipherV1::cipherBlockSize() const
|
||||
{
|
||||
return _blockCipher->blockSize();
|
||||
}
|
||||
int CipherV1::cipherBlockSize() const { return _blockCipher->blockSize(); }
|
||||
|
||||
// Deprecated: For backward compatibility only.
|
||||
// A watermark attack was published against this data-independent IV schedule.
|
||||
// The replacement incorporates the filesystem key, making it unique to each
|
||||
// filesystem.
|
||||
static void setIVec_old(byte *ivec, int ivLen, unsigned int seed)
|
||||
{
|
||||
unsigned int var1 = 0x060a4011 * seed;
|
||||
static void setIVec_old(byte *ivec, int ivLen, unsigned int seed) {
|
||||
unsigned int var1 = 0x060a4011 * seed;
|
||||
unsigned int var2 = 0x0221040d * (seed ^ 0xD3FEA11C);
|
||||
|
||||
ivec[0] ^= (var1 >> 24) & 0xff;
|
||||
ivec[1] ^= (var2 >> 16) & 0xff;
|
||||
ivec[2] ^= (var1 >> 8 ) & 0xff;
|
||||
ivec[3] ^= (var2 ) & 0xff;
|
||||
ivec[2] ^= (var1 >> 8) & 0xff;
|
||||
ivec[3] ^= (var2) & 0xff;
|
||||
ivec[4] ^= (var2 >> 24) & 0xff;
|
||||
ivec[5] ^= (var1 >> 16) & 0xff;
|
||||
ivec[6] ^= (var2 >> 8 ) & 0xff;
|
||||
ivec[7] ^= (var1 ) & 0xff;
|
||||
ivec[6] ^= (var2 >> 8) & 0xff;
|
||||
ivec[7] ^= (var1) & 0xff;
|
||||
|
||||
if(ivLen > 8)
|
||||
{
|
||||
ivec[8+0] ^= (var1 ) & 0xff;
|
||||
ivec[8+1] ^= (var2 >> 8 ) & 0xff;
|
||||
ivec[8+2] ^= (var1 >> 16) & 0xff;
|
||||
ivec[8+3] ^= (var2 >> 24) & 0xff;
|
||||
ivec[8+4] ^= (var1 >> 24) & 0xff;
|
||||
ivec[8+5] ^= (var2 >> 16) & 0xff;
|
||||
ivec[8+6] ^= (var1 >> 8 ) & 0xff;
|
||||
ivec[8+7] ^= (var2 ) & 0xff;
|
||||
if (ivLen > 8) {
|
||||
ivec[8 + 0] ^= (var1) & 0xff;
|
||||
ivec[8 + 1] ^= (var2 >> 8) & 0xff;
|
||||
ivec[8 + 2] ^= (var1 >> 16) & 0xff;
|
||||
ivec[8 + 3] ^= (var2 >> 24) & 0xff;
|
||||
ivec[8 + 4] ^= (var1 >> 24) & 0xff;
|
||||
ivec[8 + 5] ^= (var2 >> 16) & 0xff;
|
||||
ivec[8 + 6] ^= (var1 >> 8) & 0xff;
|
||||
ivec[8 + 7] ^= (var2) & 0xff;
|
||||
}
|
||||
}
|
||||
|
||||
void CipherV1::setIVec(byte *ivec, uint64_t seed) const
|
||||
{
|
||||
rAssert( _keySet );
|
||||
memcpy( ivec, _iv->data(), _ivLength );
|
||||
if (iface.major() < 3)
|
||||
{
|
||||
void CipherV1::setIVec(byte *ivec, uint64_t seed) const {
|
||||
rAssert(_keySet);
|
||||
memcpy(ivec, _iv->data(), _ivLength);
|
||||
if (iface.major() < 3) {
|
||||
// Backward compatible mode.
|
||||
setIVec_old(ivec, _ivLength, seed);
|
||||
return;
|
||||
}
|
||||
|
||||
vector<byte> md(_hmac->outputSize());
|
||||
for(int i=0; i<8; ++i)
|
||||
{
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
md[i] = (byte)(seed & 0xff);
|
||||
seed >>= 8;
|
||||
}
|
||||
@ -637,102 +568,86 @@ void CipherV1::setIVec(byte *ivec, uint64_t seed) const
|
||||
memcpy(ivec, md.data(), _ivLength);
|
||||
}
|
||||
|
||||
static void flipBytes(byte *buf, int size)
|
||||
{
|
||||
static void flipBytes(byte *buf, int size) {
|
||||
byte revBuf[64];
|
||||
|
||||
int bytesLeft = size;
|
||||
while(bytesLeft)
|
||||
{
|
||||
int toFlip = MIN( (int)sizeof(revBuf), bytesLeft );
|
||||
while (bytesLeft) {
|
||||
int toFlip = MIN((int)sizeof(revBuf), bytesLeft);
|
||||
|
||||
for(int i=0; i<toFlip; ++i)
|
||||
revBuf[i] = buf[toFlip - (i+1)];
|
||||
for (int i = 0; i < toFlip; ++i) revBuf[i] = buf[toFlip - (i + 1)];
|
||||
|
||||
memcpy( buf, revBuf, toFlip );
|
||||
memcpy(buf, revBuf, toFlip);
|
||||
bytesLeft -= toFlip;
|
||||
buf += toFlip;
|
||||
}
|
||||
memset(revBuf, 0, sizeof(revBuf));
|
||||
}
|
||||
|
||||
static void shuffleBytes(byte *buf, int size)
|
||||
{
|
||||
for(int i=0; i<size-1; ++i)
|
||||
buf[i+1] ^= buf[i];
|
||||
static void shuffleBytes(byte *buf, int size) {
|
||||
for (int i = 0; i < size - 1; ++i) buf[i + 1] ^= buf[i];
|
||||
}
|
||||
|
||||
static void unshuffleBytes(byte *buf, int size)
|
||||
{
|
||||
for(int i=size-1; i; --i)
|
||||
buf[i] ^= buf[i-1];
|
||||
static void unshuffleBytes(byte *buf, int size) {
|
||||
for (int i = size - 1; i; --i) buf[i] ^= buf[i - 1];
|
||||
}
|
||||
|
||||
/* Partial blocks are encoded with a stream cipher. We make multiple passes on
|
||||
the data to ensure that the ends of the data depend on each other.
|
||||
*/
|
||||
bool CipherV1::streamEncode(byte *buf, int size, uint64_t iv64) const
|
||||
{
|
||||
rAssert( _keySet );
|
||||
rAssert( size > 0 );
|
||||
bool CipherV1::streamEncode(byte *buf, int size, uint64_t iv64) const {
|
||||
rAssert(_keySet);
|
||||
rAssert(size > 0);
|
||||
|
||||
vector<byte> ivec(_ivLength);
|
||||
shuffleBytes( buf, size );
|
||||
shuffleBytes(buf, size);
|
||||
|
||||
setIVec( ivec.data(), iv64 );
|
||||
if (!_streamCipher->encrypt(ivec.data(), buf, buf, size))
|
||||
return false;
|
||||
setIVec(ivec.data(), iv64);
|
||||
if (!_streamCipher->encrypt(ivec.data(), buf, buf, size)) return false;
|
||||
|
||||
flipBytes( buf, size );
|
||||
shuffleBytes( buf, size );
|
||||
flipBytes(buf, size);
|
||||
shuffleBytes(buf, size);
|
||||
|
||||
setIVec( ivec.data(), iv64 + 1 );
|
||||
if (!_streamCipher->encrypt(ivec.data(), buf, buf, size))
|
||||
return false;
|
||||
setIVec(ivec.data(), iv64 + 1);
|
||||
if (!_streamCipher->encrypt(ivec.data(), buf, buf, size)) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool CipherV1::streamDecode(byte *buf, int size, uint64_t iv64) const
|
||||
{
|
||||
rAssert( _keySet );
|
||||
rAssert( size > 0 );
|
||||
bool CipherV1::streamDecode(byte *buf, int size, uint64_t iv64) const {
|
||||
rAssert(_keySet);
|
||||
rAssert(size > 0);
|
||||
|
||||
vector<byte> ivec(_ivLength);
|
||||
setIVec( ivec.data(), iv64 + 1 );
|
||||
if (!_streamCipher->decrypt(ivec.data(), buf, buf, size))
|
||||
return false;
|
||||
setIVec(ivec.data(), iv64 + 1);
|
||||
if (!_streamCipher->decrypt(ivec.data(), buf, buf, size)) return false;
|
||||
|
||||
unshuffleBytes( buf, size );
|
||||
flipBytes( buf, size );
|
||||
unshuffleBytes(buf, size);
|
||||
flipBytes(buf, size);
|
||||
|
||||
setIVec( ivec.data(), iv64 );
|
||||
if (!_streamCipher->decrypt(ivec.data(), buf, buf, size))
|
||||
return false;
|
||||
setIVec(ivec.data(), iv64);
|
||||
if (!_streamCipher->decrypt(ivec.data(), buf, buf, size)) return false;
|
||||
|
||||
unshuffleBytes( buf, size );
|
||||
unshuffleBytes(buf, size);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool CipherV1::blockEncode(byte *buf, int size, uint64_t iv64) const
|
||||
{
|
||||
rAssert( _keySet );
|
||||
rAssert( size > 0 );
|
||||
bool CipherV1::blockEncode(byte *buf, int size, uint64_t iv64) const {
|
||||
rAssert(_keySet);
|
||||
rAssert(size > 0);
|
||||
|
||||
vector<byte> ivec(_ivLength);
|
||||
setIVec( ivec.data(), iv64 );
|
||||
setIVec(ivec.data(), iv64);
|
||||
return _blockCipher->encrypt(ivec.data(), buf, buf, size);
|
||||
}
|
||||
|
||||
bool CipherV1::blockDecode(byte *buf, int size, uint64_t iv64) const
|
||||
{
|
||||
rAssert( _keySet );
|
||||
rAssert( size > 0 );
|
||||
bool CipherV1::blockDecode(byte *buf, int size, uint64_t iv64) const {
|
||||
rAssert(_keySet);
|
||||
rAssert(size > 0);
|
||||
|
||||
vector<byte> ivec(_ivLength);
|
||||
setIVec( ivec.data(), iv64 );
|
||||
setIVec(ivec.data(), iv64);
|
||||
return _blockCipher->decrypt(ivec.data(), buf, buf, size);
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user