gotosocial/vendor/github.com/twitchyliquid64/golang-asm/obj/arm/asm5.go

3097 lines
78 KiB
Go
Raw Normal View History

2023-02-25 13:12:40 +01:00
// Inferno utils/5l/span.c
// https://bitbucket.org/inferno-os/inferno-os/src/master/utils/5l/span.c
//
// Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
// Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
// Portions Copyright © 1997-1999 Vita Nuova Limited
// Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
// Portions Copyright © 2004,2006 Bruce Ellis
// Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
// Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
// Portions Copyright © 2009 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package arm
import (
"github.com/twitchyliquid64/golang-asm/obj"
"github.com/twitchyliquid64/golang-asm/objabi"
"fmt"
"log"
"math"
"sort"
)
// ctxt5 holds state while assembling a single function.
// Each function gets a fresh ctxt5.
// This allows for multiple functions to be safely concurrently assembled.
type ctxt5 struct {
ctxt *obj.Link
newprog obj.ProgAlloc
cursym *obj.LSym
printp *obj.Prog
blitrl *obj.Prog
elitrl *obj.Prog
autosize int64
instoffset int64
pc int64
pool struct {
start uint32
size uint32
extra uint32
}
}
type Optab struct {
as obj.As
a1 uint8
a2 int8
a3 uint8
type_ uint8
size int8
param int16
flag int8
pcrelsiz uint8
scond uint8 // optional flags accepted by the instruction
}
type Opcross [32][2][32]uint8
const (
LFROM = 1 << 0
LTO = 1 << 1
LPOOL = 1 << 2
LPCREL = 1 << 3
)
var optab = []Optab{
/* struct Optab:
OPCODE, from, prog->reg, to, type, size, param, flag, extra data size, optional suffix */
{obj.ATEXT, C_ADDR, C_NONE, C_TEXTSIZE, 0, 0, 0, 0, 0, 0},
{AADD, C_REG, C_REG, C_REG, 1, 4, 0, 0, 0, C_SBIT},
{AADD, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0, C_SBIT},
{AAND, C_REG, C_REG, C_REG, 1, 4, 0, 0, 0, C_SBIT},
{AAND, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0, C_SBIT},
{AORR, C_REG, C_REG, C_REG, 1, 4, 0, 0, 0, C_SBIT},
{AORR, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0, C_SBIT},
{AMOVW, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0, C_SBIT},
{AMVN, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0, C_SBIT},
{ACMP, C_REG, C_REG, C_NONE, 1, 4, 0, 0, 0, 0},
{AADD, C_RCON, C_REG, C_REG, 2, 4, 0, 0, 0, C_SBIT},
{AADD, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0, C_SBIT},
{AAND, C_RCON, C_REG, C_REG, 2, 4, 0, 0, 0, C_SBIT},
{AAND, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0, C_SBIT},
{AORR, C_RCON, C_REG, C_REG, 2, 4, 0, 0, 0, C_SBIT},
{AORR, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0, C_SBIT},
{AMOVW, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0, 0},
{AMVN, C_RCON, C_NONE, C_REG, 2, 4, 0, 0, 0, 0},
{ACMP, C_RCON, C_REG, C_NONE, 2, 4, 0, 0, 0, 0},
{AADD, C_SHIFT, C_REG, C_REG, 3, 4, 0, 0, 0, C_SBIT},
{AADD, C_SHIFT, C_NONE, C_REG, 3, 4, 0, 0, 0, C_SBIT},
{AAND, C_SHIFT, C_REG, C_REG, 3, 4, 0, 0, 0, C_SBIT},
{AAND, C_SHIFT, C_NONE, C_REG, 3, 4, 0, 0, 0, C_SBIT},
{AORR, C_SHIFT, C_REG, C_REG, 3, 4, 0, 0, 0, C_SBIT},
{AORR, C_SHIFT, C_NONE, C_REG, 3, 4, 0, 0, 0, C_SBIT},
{AMVN, C_SHIFT, C_NONE, C_REG, 3, 4, 0, 0, 0, C_SBIT},
{ACMP, C_SHIFT, C_REG, C_NONE, 3, 4, 0, 0, 0, 0},
{AMOVW, C_RACON, C_NONE, C_REG, 4, 4, REGSP, 0, 0, C_SBIT},
{AB, C_NONE, C_NONE, C_SBRA, 5, 4, 0, LPOOL, 0, 0},
{ABL, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0, 0},
{ABX, C_NONE, C_NONE, C_SBRA, 74, 20, 0, 0, 0, 0},
{ABEQ, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0, 0},
{ABEQ, C_RCON, C_NONE, C_SBRA, 5, 4, 0, 0, 0, 0}, // prediction hinted form, hint ignored
{AB, C_NONE, C_NONE, C_ROREG, 6, 4, 0, LPOOL, 0, 0},
{ABL, C_NONE, C_NONE, C_ROREG, 7, 4, 0, 0, 0, 0},
{ABL, C_REG, C_NONE, C_ROREG, 7, 4, 0, 0, 0, 0},
{ABX, C_NONE, C_NONE, C_ROREG, 75, 12, 0, 0, 0, 0},
{ABXRET, C_NONE, C_NONE, C_ROREG, 76, 4, 0, 0, 0, 0},
{ASLL, C_RCON, C_REG, C_REG, 8, 4, 0, 0, 0, C_SBIT},
{ASLL, C_RCON, C_NONE, C_REG, 8, 4, 0, 0, 0, C_SBIT},
{ASLL, C_REG, C_NONE, C_REG, 9, 4, 0, 0, 0, C_SBIT},
{ASLL, C_REG, C_REG, C_REG, 9, 4, 0, 0, 0, C_SBIT},
{ASWI, C_NONE, C_NONE, C_NONE, 10, 4, 0, 0, 0, 0},
{ASWI, C_NONE, C_NONE, C_LCON, 10, 4, 0, 0, 0, 0},
{AWORD, C_NONE, C_NONE, C_LCON, 11, 4, 0, 0, 0, 0},
{AWORD, C_NONE, C_NONE, C_LCONADDR, 11, 4, 0, 0, 0, 0},
{AWORD, C_NONE, C_NONE, C_ADDR, 11, 4, 0, 0, 0, 0},
{AWORD, C_NONE, C_NONE, C_TLS_LE, 103, 4, 0, 0, 0, 0},
{AWORD, C_NONE, C_NONE, C_TLS_IE, 104, 4, 0, 0, 0, 0},
{AMOVW, C_NCON, C_NONE, C_REG, 12, 4, 0, 0, 0, 0},
{AMOVW, C_SCON, C_NONE, C_REG, 12, 4, 0, 0, 0, 0},
{AMOVW, C_LCON, C_NONE, C_REG, 12, 4, 0, LFROM, 0, 0},
{AMOVW, C_LCONADDR, C_NONE, C_REG, 12, 4, 0, LFROM | LPCREL, 4, 0},
{AMVN, C_NCON, C_NONE, C_REG, 12, 4, 0, 0, 0, 0},
{AADD, C_NCON, C_REG, C_REG, 13, 8, 0, 0, 0, C_SBIT},
{AADD, C_NCON, C_NONE, C_REG, 13, 8, 0, 0, 0, C_SBIT},
{AAND, C_NCON, C_REG, C_REG, 13, 8, 0, 0, 0, C_SBIT},
{AAND, C_NCON, C_NONE, C_REG, 13, 8, 0, 0, 0, C_SBIT},
{AORR, C_NCON, C_REG, C_REG, 13, 8, 0, 0, 0, C_SBIT},
{AORR, C_NCON, C_NONE, C_REG, 13, 8, 0, 0, 0, C_SBIT},
{ACMP, C_NCON, C_REG, C_NONE, 13, 8, 0, 0, 0, 0},
{AADD, C_SCON, C_REG, C_REG, 13, 8, 0, 0, 0, C_SBIT},
{AADD, C_SCON, C_NONE, C_REG, 13, 8, 0, 0, 0, C_SBIT},
{AAND, C_SCON, C_REG, C_REG, 13, 8, 0, 0, 0, C_SBIT},
{AAND, C_SCON, C_NONE, C_REG, 13, 8, 0, 0, 0, C_SBIT},
{AORR, C_SCON, C_REG, C_REG, 13, 8, 0, 0, 0, C_SBIT},
{AORR, C_SCON, C_NONE, C_REG, 13, 8, 0, 0, 0, C_SBIT},
{AMVN, C_SCON, C_NONE, C_REG, 13, 8, 0, 0, 0, 0},
{ACMP, C_SCON, C_REG, C_NONE, 13, 8, 0, 0, 0, 0},
{AADD, C_RCON2A, C_REG, C_REG, 106, 8, 0, 0, 0, 0},
{AADD, C_RCON2A, C_NONE, C_REG, 106, 8, 0, 0, 0, 0},
{AORR, C_RCON2A, C_REG, C_REG, 106, 8, 0, 0, 0, 0},
{AORR, C_RCON2A, C_NONE, C_REG, 106, 8, 0, 0, 0, 0},
{AADD, C_RCON2S, C_REG, C_REG, 107, 8, 0, 0, 0, 0},
{AADD, C_RCON2S, C_NONE, C_REG, 107, 8, 0, 0, 0, 0},
{AADD, C_LCON, C_REG, C_REG, 13, 8, 0, LFROM, 0, C_SBIT},
{AADD, C_LCON, C_NONE, C_REG, 13, 8, 0, LFROM, 0, C_SBIT},
{AAND, C_LCON, C_REG, C_REG, 13, 8, 0, LFROM, 0, C_SBIT},
{AAND, C_LCON, C_NONE, C_REG, 13, 8, 0, LFROM, 0, C_SBIT},
{AORR, C_LCON, C_REG, C_REG, 13, 8, 0, LFROM, 0, C_SBIT},
{AORR, C_LCON, C_NONE, C_REG, 13, 8, 0, LFROM, 0, C_SBIT},
{AMVN, C_LCON, C_NONE, C_REG, 13, 8, 0, LFROM, 0, 0},
{ACMP, C_LCON, C_REG, C_NONE, 13, 8, 0, LFROM, 0, 0},
{AMOVB, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0, 0},
{AMOVBS, C_REG, C_NONE, C_REG, 14, 8, 0, 0, 0, 0},
{AMOVBU, C_REG, C_NONE, C_REG, 58, 4, 0, 0, 0, 0},
{AMOVH, C_REG, C_NONE, C_REG, 1, 4, 0, 0, 0, 0},
{AMOVHS, C_REG, C_NONE, C_REG, 14, 8, 0, 0, 0, 0},
{AMOVHU, C_REG, C_NONE, C_REG, 14, 8, 0, 0, 0, 0},
{AMUL, C_REG, C_REG, C_REG, 15, 4, 0, 0, 0, C_SBIT},
{AMUL, C_REG, C_NONE, C_REG, 15, 4, 0, 0, 0, C_SBIT},
{ADIV, C_REG, C_REG, C_REG, 16, 4, 0, 0, 0, 0},
{ADIV, C_REG, C_NONE, C_REG, 16, 4, 0, 0, 0, 0},
{ADIVHW, C_REG, C_REG, C_REG, 105, 4, 0, 0, 0, 0},
{ADIVHW, C_REG, C_NONE, C_REG, 105, 4, 0, 0, 0, 0},
{AMULL, C_REG, C_REG, C_REGREG, 17, 4, 0, 0, 0, C_SBIT},
{ABFX, C_LCON, C_REG, C_REG, 18, 4, 0, 0, 0, 0}, // width in From, LSB in From3
{ABFX, C_LCON, C_NONE, C_REG, 18, 4, 0, 0, 0, 0}, // width in From, LSB in From3
{AMOVW, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVW, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVB, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVB, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBS, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBS, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBU, C_REG, C_NONE, C_SAUTO, 20, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBU, C_REG, C_NONE, C_SOREG, 20, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVW, C_SAUTO, C_NONE, C_REG, 21, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVW, C_SOREG, C_NONE, C_REG, 21, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBU, C_SAUTO, C_NONE, C_REG, 21, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBU, C_SOREG, C_NONE, C_REG, 21, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AXTAB, C_SHIFT, C_REG, C_REG, 22, 4, 0, 0, 0, 0},
{AXTAB, C_SHIFT, C_NONE, C_REG, 22, 4, 0, 0, 0, 0},
{AMOVW, C_SHIFT, C_NONE, C_REG, 23, 4, 0, 0, 0, C_SBIT},
{AMOVB, C_SHIFT, C_NONE, C_REG, 23, 4, 0, 0, 0, 0},
{AMOVBS, C_SHIFT, C_NONE, C_REG, 23, 4, 0, 0, 0, 0},
{AMOVBU, C_SHIFT, C_NONE, C_REG, 23, 4, 0, 0, 0, 0},
{AMOVH, C_SHIFT, C_NONE, C_REG, 23, 4, 0, 0, 0, 0},
{AMOVHS, C_SHIFT, C_NONE, C_REG, 23, 4, 0, 0, 0, 0},
{AMOVHU, C_SHIFT, C_NONE, C_REG, 23, 4, 0, 0, 0, 0},
{AMOVW, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVW, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVW, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AMOVB, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVB, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVB, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AMOVBS, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBS, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBS, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AMOVBU, C_REG, C_NONE, C_LAUTO, 30, 8, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBU, C_REG, C_NONE, C_LOREG, 30, 8, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBU, C_REG, C_NONE, C_ADDR, 64, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AMOVW, C_TLS_LE, C_NONE, C_REG, 101, 4, 0, LFROM, 0, 0},
{AMOVW, C_TLS_IE, C_NONE, C_REG, 102, 8, 0, LFROM, 0, 0},
{AMOVW, C_LAUTO, C_NONE, C_REG, 31, 8, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVW, C_LOREG, C_NONE, C_REG, 31, 8, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVW, C_ADDR, C_NONE, C_REG, 65, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AMOVBU, C_LAUTO, C_NONE, C_REG, 31, 8, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBU, C_LOREG, C_NONE, C_REG, 31, 8, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBU, C_ADDR, C_NONE, C_REG, 65, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AMOVW, C_LACON, C_NONE, C_REG, 34, 8, REGSP, LFROM, 0, C_SBIT},
{AMOVW, C_PSR, C_NONE, C_REG, 35, 4, 0, 0, 0, 0},
{AMOVW, C_REG, C_NONE, C_PSR, 36, 4, 0, 0, 0, 0},
{AMOVW, C_RCON, C_NONE, C_PSR, 37, 4, 0, 0, 0, 0},
{AMOVM, C_REGLIST, C_NONE, C_SOREG, 38, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVM, C_SOREG, C_NONE, C_REGLIST, 39, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{ASWPW, C_SOREG, C_REG, C_REG, 40, 4, 0, 0, 0, 0},
{ARFE, C_NONE, C_NONE, C_NONE, 41, 4, 0, 0, 0, 0},
{AMOVF, C_FREG, C_NONE, C_FAUTO, 50, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVF, C_FREG, C_NONE, C_FOREG, 50, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVF, C_FAUTO, C_NONE, C_FREG, 51, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVF, C_FOREG, C_NONE, C_FREG, 51, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVF, C_FREG, C_NONE, C_LAUTO, 52, 12, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVF, C_FREG, C_NONE, C_LOREG, 52, 12, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVF, C_LAUTO, C_NONE, C_FREG, 53, 12, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVF, C_LOREG, C_NONE, C_FREG, 53, 12, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVF, C_FREG, C_NONE, C_ADDR, 68, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AMOVF, C_ADDR, C_NONE, C_FREG, 69, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AADDF, C_FREG, C_NONE, C_FREG, 54, 4, 0, 0, 0, 0},
{AADDF, C_FREG, C_FREG, C_FREG, 54, 4, 0, 0, 0, 0},
{AMOVF, C_FREG, C_NONE, C_FREG, 55, 4, 0, 0, 0, 0},
{ANEGF, C_FREG, C_NONE, C_FREG, 55, 4, 0, 0, 0, 0},
{AMOVW, C_REG, C_NONE, C_FCR, 56, 4, 0, 0, 0, 0},
{AMOVW, C_FCR, C_NONE, C_REG, 57, 4, 0, 0, 0, 0},
{AMOVW, C_SHIFTADDR, C_NONE, C_REG, 59, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBU, C_SHIFTADDR, C_NONE, C_REG, 59, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVB, C_SHIFTADDR, C_NONE, C_REG, 60, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBS, C_SHIFTADDR, C_NONE, C_REG, 60, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVH, C_SHIFTADDR, C_NONE, C_REG, 60, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHS, C_SHIFTADDR, C_NONE, C_REG, 60, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHU, C_SHIFTADDR, C_NONE, C_REG, 60, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVW, C_REG, C_NONE, C_SHIFTADDR, 61, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVB, C_REG, C_NONE, C_SHIFTADDR, 61, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBS, C_REG, C_NONE, C_SHIFTADDR, 61, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBU, C_REG, C_NONE, C_SHIFTADDR, 61, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVH, C_REG, C_NONE, C_SHIFTADDR, 62, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHS, C_REG, C_NONE, C_SHIFTADDR, 62, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHU, C_REG, C_NONE, C_SHIFTADDR, 62, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVH, C_REG, C_NONE, C_HAUTO, 70, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVH, C_REG, C_NONE, C_HOREG, 70, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHS, C_REG, C_NONE, C_HAUTO, 70, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHS, C_REG, C_NONE, C_HOREG, 70, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHU, C_REG, C_NONE, C_HAUTO, 70, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHU, C_REG, C_NONE, C_HOREG, 70, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVB, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVB, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBS, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBS, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVH, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVH, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHS, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHS, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHU, C_HAUTO, C_NONE, C_REG, 71, 4, REGSP, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHU, C_HOREG, C_NONE, C_REG, 71, 4, 0, 0, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVH, C_REG, C_NONE, C_LAUTO, 72, 8, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVH, C_REG, C_NONE, C_LOREG, 72, 8, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVH, C_REG, C_NONE, C_ADDR, 94, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AMOVHS, C_REG, C_NONE, C_LAUTO, 72, 8, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHS, C_REG, C_NONE, C_LOREG, 72, 8, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHS, C_REG, C_NONE, C_ADDR, 94, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AMOVHU, C_REG, C_NONE, C_LAUTO, 72, 8, REGSP, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHU, C_REG, C_NONE, C_LOREG, 72, 8, 0, LTO, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHU, C_REG, C_NONE, C_ADDR, 94, 8, 0, LTO | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AMOVB, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVB, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVB, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AMOVBS, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBS, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVBS, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AMOVH, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVH, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVH, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AMOVHS, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHS, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHS, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{AMOVHU, C_LAUTO, C_NONE, C_REG, 73, 8, REGSP, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHU, C_LOREG, C_NONE, C_REG, 73, 8, 0, LFROM, 0, C_PBIT | C_WBIT | C_UBIT},
{AMOVHU, C_ADDR, C_NONE, C_REG, 93, 8, 0, LFROM | LPCREL, 4, C_PBIT | C_WBIT | C_UBIT},
{ALDREX, C_SOREG, C_NONE, C_REG, 77, 4, 0, 0, 0, 0},
{ASTREX, C_SOREG, C_REG, C_REG, 78, 4, 0, 0, 0, 0},
{ADMB, C_NONE, C_NONE, C_NONE, 110, 4, 0, 0, 0, 0},
{ADMB, C_LCON, C_NONE, C_NONE, 110, 4, 0, 0, 0, 0},
{ADMB, C_SPR, C_NONE, C_NONE, 110, 4, 0, 0, 0, 0},
{AMOVF, C_ZFCON, C_NONE, C_FREG, 80, 8, 0, 0, 0, 0},
{AMOVF, C_SFCON, C_NONE, C_FREG, 81, 4, 0, 0, 0, 0},
{ACMPF, C_FREG, C_FREG, C_NONE, 82, 8, 0, 0, 0, 0},
{ACMPF, C_FREG, C_NONE, C_NONE, 83, 8, 0, 0, 0, 0},
{AMOVFW, C_FREG, C_NONE, C_FREG, 84, 4, 0, 0, 0, C_UBIT},
{AMOVWF, C_FREG, C_NONE, C_FREG, 85, 4, 0, 0, 0, C_UBIT},
{AMOVFW, C_FREG, C_NONE, C_REG, 86, 8, 0, 0, 0, C_UBIT},
{AMOVWF, C_REG, C_NONE, C_FREG, 87, 8, 0, 0, 0, C_UBIT},
{AMOVW, C_REG, C_NONE, C_FREG, 88, 4, 0, 0, 0, 0},
{AMOVW, C_FREG, C_NONE, C_REG, 89, 4, 0, 0, 0, 0},
{ALDREXD, C_SOREG, C_NONE, C_REG, 91, 4, 0, 0, 0, 0},
{ASTREXD, C_SOREG, C_REG, C_REG, 92, 4, 0, 0, 0, 0},
{APLD, C_SOREG, C_NONE, C_NONE, 95, 4, 0, 0, 0, 0},
{obj.AUNDEF, C_NONE, C_NONE, C_NONE, 96, 4, 0, 0, 0, 0},
{ACLZ, C_REG, C_NONE, C_REG, 97, 4, 0, 0, 0, 0},
{AMULWT, C_REG, C_REG, C_REG, 98, 4, 0, 0, 0, 0},
{AMULA, C_REG, C_REG, C_REGREG2, 99, 4, 0, 0, 0, C_SBIT},
{AMULAWT, C_REG, C_REG, C_REGREG2, 99, 4, 0, 0, 0, 0},
{obj.APCDATA, C_LCON, C_NONE, C_LCON, 0, 0, 0, 0, 0, 0},
{obj.AFUNCDATA, C_LCON, C_NONE, C_ADDR, 0, 0, 0, 0, 0, 0},
{obj.ANOP, C_NONE, C_NONE, C_NONE, 0, 0, 0, 0, 0, 0},
{obj.ANOP, C_LCON, C_NONE, C_NONE, 0, 0, 0, 0, 0, 0}, // nop variants, see #40689
{obj.ANOP, C_REG, C_NONE, C_NONE, 0, 0, 0, 0, 0, 0},
{obj.ANOP, C_FREG, C_NONE, C_NONE, 0, 0, 0, 0, 0, 0},
{obj.ADUFFZERO, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0, 0}, // same as ABL
{obj.ADUFFCOPY, C_NONE, C_NONE, C_SBRA, 5, 4, 0, 0, 0, 0}, // same as ABL
{obj.AXXX, C_NONE, C_NONE, C_NONE, 0, 4, 0, 0, 0, 0},
}
var mbOp = []struct {
reg int16
enc uint32
}{
{REG_MB_SY, 15},
{REG_MB_ST, 14},
{REG_MB_ISH, 11},
{REG_MB_ISHST, 10},
{REG_MB_NSH, 7},
{REG_MB_NSHST, 6},
{REG_MB_OSH, 3},
{REG_MB_OSHST, 2},
}
var oprange [ALAST & obj.AMask][]Optab
var xcmp [C_GOK + 1][C_GOK + 1]bool
var (
deferreturn *obj.LSym
symdiv *obj.LSym
symdivu *obj.LSym
symmod *obj.LSym
symmodu *obj.LSym
)
// Note about encoding: Prog.scond holds the condition encoding,
// but XOR'ed with C_SCOND_XOR, so that C_SCOND_NONE == 0.
// The code that shifts the value << 28 has the responsibility
// for XORing with C_SCOND_XOR too.
func checkSuffix(c *ctxt5, p *obj.Prog, o *Optab) {
if p.Scond&C_SBIT != 0 && o.scond&C_SBIT == 0 {
c.ctxt.Diag("invalid .S suffix: %v", p)
}
if p.Scond&C_PBIT != 0 && o.scond&C_PBIT == 0 {
c.ctxt.Diag("invalid .P suffix: %v", p)
}
if p.Scond&C_WBIT != 0 && o.scond&C_WBIT == 0 {
c.ctxt.Diag("invalid .W suffix: %v", p)
}
if p.Scond&C_UBIT != 0 && o.scond&C_UBIT == 0 {
c.ctxt.Diag("invalid .U suffix: %v", p)
}
}
func span5(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
if ctxt.Retpoline {
ctxt.Diag("-spectre=ret not supported on arm")
ctxt.Retpoline = false // don't keep printing
}
var p *obj.Prog
var op *obj.Prog
p = cursym.Func.Text
if p == nil || p.Link == nil { // handle external functions and ELF section symbols
return
}
if oprange[AAND&obj.AMask] == nil {
ctxt.Diag("arm ops not initialized, call arm.buildop first")
}
c := ctxt5{ctxt: ctxt, newprog: newprog, cursym: cursym, autosize: p.To.Offset + 4}
pc := int32(0)
op = p
p = p.Link
var m int
var o *Optab
for ; p != nil || c.blitrl != nil; op, p = p, p.Link {
if p == nil {
if c.checkpool(op, pc) {
p = op
continue
}
// can't happen: blitrl is not nil, but checkpool didn't flushpool
ctxt.Diag("internal inconsistency")
break
}
p.Pc = int64(pc)
o = c.oplook(p)
m = int(o.size)
if m%4 != 0 || p.Pc%4 != 0 {
ctxt.Diag("!pc invalid: %v size=%d", p, m)
}
// must check literal pool here in case p generates many instructions
if c.blitrl != nil {
// Emit the constant pool just before p if p
// would push us over the immediate size limit.
if c.checkpool(op, pc+int32(m)) {
// Back up to the instruction just
// before the pool and continue with
// the first instruction of the pool.
p = op
continue
}
}
if m == 0 && (p.As != obj.AFUNCDATA && p.As != obj.APCDATA && p.As != obj.ANOP) {
ctxt.Diag("zero-width instruction\n%v", p)
continue
}
switch o.flag & (LFROM | LTO | LPOOL) {
case LFROM:
c.addpool(p, &p.From)
case LTO:
c.addpool(p, &p.To)
case LPOOL:
if p.Scond&C_SCOND == C_SCOND_NONE {
c.flushpool(p, 0, 0)
}
}
if p.As == AMOVW && p.To.Type == obj.TYPE_REG && p.To.Reg == REGPC && p.Scond&C_SCOND == C_SCOND_NONE {
c.flushpool(p, 0, 0)
}
pc += int32(m)
}
c.cursym.Size = int64(pc)
/*
* if any procedure is large enough to
* generate a large SBRA branch, then
* generate extra passes putting branches
* around jmps to fix. this is rare.
*/
times := 0
var bflag int
var opc int32
var out [6 + 3]uint32
for {
bflag = 0
pc = 0
times++
c.cursym.Func.Text.Pc = 0 // force re-layout the code.
for p = c.cursym.Func.Text; p != nil; p = p.Link {
o = c.oplook(p)
if int64(pc) > p.Pc {
p.Pc = int64(pc)
}
/* very large branches
if(o->type == 6 && p->pcond) {
otxt = p->pcond->pc - c;
if(otxt < 0)
otxt = -otxt;
if(otxt >= (1L<<17) - 10) {
q = emallocz(sizeof(Prog));
q->link = p->link;
p->link = q;
q->as = AB;
q->to.type = TYPE_BRANCH;
q->pcond = p->pcond;
p->pcond = q;
q = emallocz(sizeof(Prog));
q->link = p->link;
p->link = q;
q->as = AB;
q->to.type = TYPE_BRANCH;
q->pcond = q->link->link;
bflag = 1;
}
}
*/
opc = int32(p.Pc)
m = int(o.size)
if p.Pc != int64(opc) {
bflag = 1
}
//print("%v pc changed %d to %d in iter. %d\n", p, opc, (int32)p->pc, times);
pc = int32(p.Pc + int64(m))
if m%4 != 0 || p.Pc%4 != 0 {
ctxt.Diag("pc invalid: %v size=%d", p, m)
}
if m/4 > len(out) {
ctxt.Diag("instruction size too large: %d > %d", m/4, len(out))
}
if m == 0 && (p.As != obj.AFUNCDATA && p.As != obj.APCDATA && p.As != obj.ANOP) {
if p.As == obj.ATEXT {
c.autosize = p.To.Offset + 4
continue
}
ctxt.Diag("zero-width instruction\n%v", p)
continue
}
}
c.cursym.Size = int64(pc)
if bflag == 0 {
break
}
}
if pc%4 != 0 {
ctxt.Diag("sym->size=%d, invalid", pc)
}
/*
* lay out the code. all the pc-relative code references,
* even cross-function, are resolved now;
* only data references need to be relocated.
* with more work we could leave cross-function
* code references to be relocated too, and then
* perhaps we'd be able to parallelize the span loop above.
*/
p = c.cursym.Func.Text
c.autosize = p.To.Offset + 4
c.cursym.Grow(c.cursym.Size)
bp := c.cursym.P
pc = int32(p.Pc) // even p->link might need extra padding
var v int
for p = p.Link; p != nil; p = p.Link {
c.pc = p.Pc
o = c.oplook(p)
opc = int32(p.Pc)
c.asmout(p, o, out[:])
m = int(o.size)
if m%4 != 0 || p.Pc%4 != 0 {
ctxt.Diag("final stage: pc invalid: %v size=%d", p, m)
}
if int64(pc) > p.Pc {
ctxt.Diag("PC padding invalid: want %#d, has %#d: %v", p.Pc, pc, p)
}
for int64(pc) != p.Pc {
// emit 0xe1a00000 (MOVW R0, R0)
bp[0] = 0x00
bp = bp[1:]
bp[0] = 0x00
bp = bp[1:]
bp[0] = 0xa0
bp = bp[1:]
bp[0] = 0xe1
bp = bp[1:]
pc += 4
}
for i := 0; i < m/4; i++ {
v = int(out[i])
bp[0] = byte(v)
bp = bp[1:]
bp[0] = byte(v >> 8)
bp = bp[1:]
bp[0] = byte(v >> 16)
bp = bp[1:]
bp[0] = byte(v >> 24)
bp = bp[1:]
}
pc += int32(m)
}
}
// checkpool flushes the literal pool when the first reference to
// it threatens to go out of range of a 12-bit PC-relative offset.
//
// nextpc is the tentative next PC at which the pool could be emitted.
// checkpool should be called *before* emitting the instruction that
// would cause the PC to reach nextpc.
// If nextpc is too far from the first pool reference, checkpool will
// flush the pool immediately after p.
// The caller should resume processing a p.Link.
func (c *ctxt5) checkpool(p *obj.Prog, nextpc int32) bool {
poolLast := nextpc
poolLast += 4 // the AB instruction to jump around the pool
poolLast += int32(c.pool.size) - 4 // the offset of the last pool entry
refPC := int32(c.pool.start) // PC of the first pool reference
v := poolLast - refPC - 8 // 12-bit PC-relative offset (see omvl)
if c.pool.size >= 0xff0 || immaddr(v) == 0 {
return c.flushpool(p, 1, 0)
} else if p.Link == nil {
return c.flushpool(p, 2, 0)
}
return false
}
func (c *ctxt5) flushpool(p *obj.Prog, skip int, force int) bool {
if c.blitrl != nil {
if skip != 0 {
if false && skip == 1 {
fmt.Printf("note: flush literal pool at %x: len=%d ref=%x\n", uint64(p.Pc+4), c.pool.size, c.pool.start)
}
q := c.newprog()
q.As = AB
q.To.Type = obj.TYPE_BRANCH
q.To.SetTarget(p.Link)
q.Link = c.blitrl
q.Pos = p.Pos
c.blitrl = q
} else if force == 0 && (p.Pc+int64(c.pool.size)-int64(c.pool.start) < 2048) {
return false
}
// The line number for constant pool entries doesn't really matter.
// We set it to the line number of the preceding instruction so that
// there are no deltas to encode in the pc-line tables.
for q := c.blitrl; q != nil; q = q.Link {
q.Pos = p.Pos
}
c.elitrl.Link = p.Link
p.Link = c.blitrl
c.blitrl = nil /* BUG: should refer back to values until out-of-range */
c.elitrl = nil
c.pool.size = 0
c.pool.start = 0
c.pool.extra = 0
return true
}
return false
}
func (c *ctxt5) addpool(p *obj.Prog, a *obj.Addr) {
t := c.newprog()
t.As = AWORD
switch c.aclass(a) {
default:
t.To.Offset = a.Offset
t.To.Sym = a.Sym
t.To.Type = a.Type
t.To.Name = a.Name
if c.ctxt.Flag_shared && t.To.Sym != nil {
t.Rel = p
}
case C_SROREG,
C_LOREG,
C_ROREG,
C_FOREG,
C_SOREG,
C_HOREG,
C_FAUTO,
C_SAUTO,
C_LAUTO,
C_LACON:
t.To.Type = obj.TYPE_CONST
t.To.Offset = c.instoffset
}
if t.Rel == nil {
for q := c.blitrl; q != nil; q = q.Link { /* could hash on t.t0.offset */
if q.Rel == nil && q.To == t.To {
p.Pool = q
return
}
}
}
q := c.newprog()
*q = *t
q.Pc = int64(c.pool.size)
if c.blitrl == nil {
c.blitrl = q
c.pool.start = uint32(p.Pc)
} else {
c.elitrl.Link = q
}
c.elitrl = q
c.pool.size += 4
// Store the link to the pool entry in Pool.
p.Pool = q
}
func (c *ctxt5) regoff(a *obj.Addr) int32 {
c.instoffset = 0
c.aclass(a)
return int32(c.instoffset)
}
func immrot(v uint32) int32 {
for i := 0; i < 16; i++ {
if v&^0xff == 0 {
return int32(uint32(int32(i)<<8) | v | 1<<25)
}
v = v<<2 | v>>30
}
return 0
}
// immrot2a returns bits encoding the immediate constant fields of two instructions,
// such that the encoded constants x, y satisfy x|y==v, x&y==0.
// Returns 0,0 if no such decomposition of v exists.
func immrot2a(v uint32) (uint32, uint32) {
for i := uint(1); i < 32; i++ {
m := uint32(1<<i - 1)
if x, y := immrot(v&m), immrot(v&^m); x != 0 && y != 0 {
return uint32(x), uint32(y)
}
}
// TODO: handle some more cases, like where
// the wraparound from the rotate could help.
return 0, 0
}
// immrot2s returns bits encoding the immediate constant fields of two instructions,
// such that the encoded constants y, x satisfy y-x==v, y&x==0.
// Returns 0,0 if no such decomposition of v exists.
func immrot2s(v uint32) (uint32, uint32) {
if immrot(v) != 0 {
return v, 0
}
// suppose v in the form of {leading 00, upper effective bits, lower 8 effective bits, trailing 00}
// omit trailing 00
var i uint32
for i = 2; i < 32; i += 2 {
if v&(1<<i-1) != 0 {
break
}
}
// i must be <= 24, then adjust i just above lower 8 effective bits of v
i += 6
// let x = {the complement of lower 8 effective bits, trailing 00}, y = x + v
x := 1<<i - v&(1<<i-1)
y := v + x
if y, x = uint32(immrot(y)), uint32(immrot(x)); y != 0 && x != 0 {
return y, x
}
return 0, 0
}
func immaddr(v int32) int32 {
if v >= 0 && v <= 0xfff {
return v&0xfff | 1<<24 | 1<<23 /* pre indexing */ /* pre indexing, up */
}
if v >= -0xfff && v < 0 {
return -v&0xfff | 1<<24 /* pre indexing */
}
return 0
}
func immfloat(v int32) bool {
return v&0xC03 == 0 /* offset will fit in floating-point load/store */
}
func immhalf(v int32) bool {
if v >= 0 && v <= 0xff {
return v|1<<24|1<<23 != 0 /* pre indexing */ /* pre indexing, up */
}
if v >= -0xff && v < 0 {
return -v&0xff|1<<24 != 0 /* pre indexing */
}
return false
}
func (c *ctxt5) aclass(a *obj.Addr) int {
switch a.Type {
case obj.TYPE_NONE:
return C_NONE
case obj.TYPE_REG:
c.instoffset = 0
if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
return C_REG
}
if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
return C_FREG
}
if a.Reg == REG_FPSR || a.Reg == REG_FPCR {
return C_FCR
}
if a.Reg == REG_CPSR || a.Reg == REG_SPSR {
return C_PSR
}
if a.Reg >= REG_SPECIAL {
return C_SPR
}
return C_GOK
case obj.TYPE_REGREG:
return C_REGREG
case obj.TYPE_REGREG2:
return C_REGREG2
case obj.TYPE_REGLIST:
return C_REGLIST
case obj.TYPE_SHIFT:
if a.Reg == 0 {
// register shift R>>i
return C_SHIFT
} else {
// memory address with shifted offset R>>i(R)
return C_SHIFTADDR
}
case obj.TYPE_MEM:
switch a.Name {
case obj.NAME_EXTERN,
obj.NAME_GOTREF,
obj.NAME_STATIC:
if a.Sym == nil || a.Sym.Name == "" {
fmt.Printf("null sym external\n")
return C_GOK
}
c.instoffset = 0 // s.b. unused but just in case
if a.Sym.Type == objabi.STLSBSS {
if c.ctxt.Flag_shared {
return C_TLS_IE
} else {
return C_TLS_LE
}
}
return C_ADDR
case obj.NAME_AUTO:
if a.Reg == REGSP {
// unset base register for better printing, since
// a.Offset is still relative to pseudo-SP.
a.Reg = obj.REG_NONE
}
c.instoffset = c.autosize + a.Offset
if t := immaddr(int32(c.instoffset)); t != 0 {
if immhalf(int32(c.instoffset)) {
if immfloat(t) {
return C_HFAUTO
}
return C_HAUTO
}
if immfloat(t) {
return C_FAUTO
}
return C_SAUTO
}
return C_LAUTO
case obj.NAME_PARAM:
if a.Reg == REGSP {
// unset base register for better printing, since
// a.Offset is still relative to pseudo-FP.
a.Reg = obj.REG_NONE
}
c.instoffset = c.autosize + a.Offset + 4
if t := immaddr(int32(c.instoffset)); t != 0 {
if immhalf(int32(c.instoffset)) {
if immfloat(t) {
return C_HFAUTO
}
return C_HAUTO
}
if immfloat(t) {
return C_FAUTO
}
return C_SAUTO
}
return C_LAUTO
case obj.NAME_NONE:
c.instoffset = a.Offset
if t := immaddr(int32(c.instoffset)); t != 0 {
if immhalf(int32(c.instoffset)) { /* n.b. that it will also satisfy immrot */
if immfloat(t) {
return C_HFOREG
}
return C_HOREG
}
if immfloat(t) {
return C_FOREG /* n.b. that it will also satisfy immrot */
}
if immrot(uint32(c.instoffset)) != 0 {
return C_SROREG
}
if immhalf(int32(c.instoffset)) {
return C_HOREG
}
return C_SOREG
}
if immrot(uint32(c.instoffset)) != 0 {
return C_ROREG
}
return C_LOREG
}
return C_GOK
case obj.TYPE_FCONST:
if c.chipzero5(a.Val.(float64)) >= 0 {
return C_ZFCON
}
if c.chipfloat5(a.Val.(float64)) >= 0 {
return C_SFCON
}
return C_LFCON
case obj.TYPE_TEXTSIZE:
return C_TEXTSIZE
case obj.TYPE_CONST,
obj.TYPE_ADDR:
switch a.Name {
case obj.NAME_NONE:
c.instoffset = a.Offset
if a.Reg != 0 {
return c.aconsize()
}
if immrot(uint32(c.instoffset)) != 0 {
return C_RCON
}
if immrot(^uint32(c.instoffset)) != 0 {
return C_NCON
}
if uint32(c.instoffset) <= 0xffff && objabi.GOARM == 7 {
return C_SCON
}
if x, y := immrot2a(uint32(c.instoffset)); x != 0 && y != 0 {
return C_RCON2A
}
if y, x := immrot2s(uint32(c.instoffset)); x != 0 && y != 0 {
return C_RCON2S
}
return C_LCON
case obj.NAME_EXTERN,
obj.NAME_GOTREF,
obj.NAME_STATIC:
s := a.Sym
if s == nil {
break
}
c.instoffset = 0 // s.b. unused but just in case
return C_LCONADDR
case obj.NAME_AUTO:
if a.Reg == REGSP {
// unset base register for better printing, since
// a.Offset is still relative to pseudo-SP.
a.Reg = obj.REG_NONE
}
c.instoffset = c.autosize + a.Offset
return c.aconsize()
case obj.NAME_PARAM:
if a.Reg == REGSP {
// unset base register for better printing, since
// a.Offset is still relative to pseudo-FP.
a.Reg = obj.REG_NONE
}
c.instoffset = c.autosize + a.Offset + 4
return c.aconsize()
}
return C_GOK
case obj.TYPE_BRANCH:
return C_SBRA
}
return C_GOK
}
func (c *ctxt5) aconsize() int {
if immrot(uint32(c.instoffset)) != 0 {
return C_RACON
}
if immrot(uint32(-c.instoffset)) != 0 {
return C_RACON
}
return C_LACON
}
func (c *ctxt5) oplook(p *obj.Prog) *Optab {
a1 := int(p.Optab)
if a1 != 0 {
return &optab[a1-1]
}
a1 = int(p.From.Class)
if a1 == 0 {
a1 = c.aclass(&p.From) + 1
p.From.Class = int8(a1)
}
a1--
a3 := int(p.To.Class)
if a3 == 0 {
a3 = c.aclass(&p.To) + 1
p.To.Class = int8(a3)
}
a3--
a2 := C_NONE
if p.Reg != 0 {
switch {
case REG_F0 <= p.Reg && p.Reg <= REG_F15:
a2 = C_FREG
case REG_R0 <= p.Reg && p.Reg <= REG_R15:
a2 = C_REG
default:
c.ctxt.Diag("invalid register in %v", p)
}
}
// check illegal base register
switch a1 {
case C_SOREG, C_LOREG, C_HOREG, C_FOREG, C_ROREG, C_HFOREG, C_SROREG, C_SHIFTADDR:
if p.From.Reg < REG_R0 || REG_R15 < p.From.Reg {
c.ctxt.Diag("illegal base register: %v", p)
}
default:
}
switch a3 {
case C_SOREG, C_LOREG, C_HOREG, C_FOREG, C_ROREG, C_HFOREG, C_SROREG, C_SHIFTADDR:
if p.To.Reg < REG_R0 || REG_R15 < p.To.Reg {
c.ctxt.Diag("illegal base register: %v", p)
}
default:
}
// If current instruction has a .S suffix (flags update),
// we must use the constant pool instead of splitting it.
if (a1 == C_RCON2A || a1 == C_RCON2S) && p.Scond&C_SBIT != 0 {
a1 = C_LCON
}
if (a3 == C_RCON2A || a3 == C_RCON2S) && p.Scond&C_SBIT != 0 {
a3 = C_LCON
}
if false { /*debug['O']*/
fmt.Printf("oplook %v %v %v %v\n", p.As, DRconv(a1), DRconv(a2), DRconv(a3))
fmt.Printf("\t\t%d %d\n", p.From.Type, p.To.Type)
}
ops := oprange[p.As&obj.AMask]
c1 := &xcmp[a1]
c3 := &xcmp[a3]
for i := range ops {
op := &ops[i]
if int(op.a2) == a2 && c1[op.a1] && c3[op.a3] {
p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
checkSuffix(c, p, op)
return op
}
}
c.ctxt.Diag("illegal combination %v; %v %v %v; from %d %d; to %d %d", p, DRconv(a1), DRconv(a2), DRconv(a3), p.From.Type, p.From.Name, p.To.Type, p.To.Name)
if ops == nil {
ops = optab
}
return &ops[0]
}
func cmp(a int, b int) bool {
if a == b {
return true
}
switch a {
case C_LCON:
if b == C_RCON || b == C_NCON || b == C_SCON || b == C_RCON2A || b == C_RCON2S {
return true
}
case C_LACON:
if b == C_RACON {
return true
}
case C_LFCON:
if b == C_ZFCON || b == C_SFCON {
return true
}
case C_HFAUTO:
return b == C_HAUTO || b == C_FAUTO
case C_FAUTO, C_HAUTO:
return b == C_HFAUTO
case C_SAUTO:
return cmp(C_HFAUTO, b)
case C_LAUTO:
return cmp(C_SAUTO, b)
case C_HFOREG:
return b == C_HOREG || b == C_FOREG
case C_FOREG, C_HOREG:
return b == C_HFOREG
case C_SROREG:
return cmp(C_SOREG, b) || cmp(C_ROREG, b)
case C_SOREG, C_ROREG:
return b == C_SROREG || cmp(C_HFOREG, b)
case C_LOREG:
return cmp(C_SROREG, b)
case C_LBRA:
if b == C_SBRA {
return true
}
case C_HREG:
return cmp(C_SP, b) || cmp(C_PC, b)
}
return false
}
type ocmp []Optab
func (x ocmp) Len() int {
return len(x)
}
func (x ocmp) Swap(i, j int) {
x[i], x[j] = x[j], x[i]
}
func (x ocmp) Less(i, j int) bool {
p1 := &x[i]
p2 := &x[j]
n := int(p1.as) - int(p2.as)
if n != 0 {
return n < 0
}
n = int(p1.a1) - int(p2.a1)
if n != 0 {
return n < 0
}
n = int(p1.a2) - int(p2.a2)
if n != 0 {
return n < 0
}
n = int(p1.a3) - int(p2.a3)
if n != 0 {
return n < 0
}
return false
}
func opset(a, b0 obj.As) {
oprange[a&obj.AMask] = oprange[b0]
}
func buildop(ctxt *obj.Link) {
if oprange[AAND&obj.AMask] != nil {
// Already initialized; stop now.
// This happens in the cmd/asm tests,
// each of which re-initializes the arch.
return
}
deferreturn = ctxt.LookupABI("runtime.deferreturn", obj.ABIInternal)
symdiv = ctxt.Lookup("runtime._div")
symdivu = ctxt.Lookup("runtime._divu")
symmod = ctxt.Lookup("runtime._mod")
symmodu = ctxt.Lookup("runtime._modu")
var n int
for i := 0; i < C_GOK; i++ {
for n = 0; n < C_GOK; n++ {
if cmp(n, i) {
xcmp[i][n] = true
}
}
}
for n = 0; optab[n].as != obj.AXXX; n++ {
if optab[n].flag&LPCREL != 0 {
if ctxt.Flag_shared {
optab[n].size += int8(optab[n].pcrelsiz)
} else {
optab[n].flag &^= LPCREL
}
}
}
sort.Sort(ocmp(optab[:n]))
for i := 0; i < n; i++ {
r := optab[i].as
r0 := r & obj.AMask
start := i
for optab[i].as == r {
i++
}
oprange[r0] = optab[start:i]
i--
switch r {
default:
ctxt.Diag("unknown op in build: %v", r)
ctxt.DiagFlush()
log.Fatalf("bad code")
case AADD:
opset(ASUB, r0)
opset(ARSB, r0)
opset(AADC, r0)
opset(ASBC, r0)
opset(ARSC, r0)
case AORR:
opset(AEOR, r0)
opset(ABIC, r0)
case ACMP:
opset(ATEQ, r0)
opset(ACMN, r0)
opset(ATST, r0)
case AMVN:
break
case ABEQ:
opset(ABNE, r0)
opset(ABCS, r0)
opset(ABHS, r0)
opset(ABCC, r0)
opset(ABLO, r0)
opset(ABMI, r0)
opset(ABPL, r0)
opset(ABVS, r0)
opset(ABVC, r0)
opset(ABHI, r0)
opset(ABLS, r0)
opset(ABGE, r0)
opset(ABLT, r0)
opset(ABGT, r0)
opset(ABLE, r0)
case ASLL:
opset(ASRL, r0)
opset(ASRA, r0)
case AMUL:
opset(AMULU, r0)
case ADIV:
opset(AMOD, r0)
opset(AMODU, r0)
opset(ADIVU, r0)
case ADIVHW:
opset(ADIVUHW, r0)
case AMOVW,
AMOVB,
AMOVBS,
AMOVBU,
AMOVH,
AMOVHS,
AMOVHU:
break
case ASWPW:
opset(ASWPBU, r0)
case AB,
ABL,
ABX,
ABXRET,
obj.ADUFFZERO,
obj.ADUFFCOPY,
ASWI,
AWORD,
AMOVM,
ARFE,
obj.ATEXT:
break
case AADDF:
opset(AADDD, r0)
opset(ASUBF, r0)
opset(ASUBD, r0)
opset(AMULF, r0)
opset(AMULD, r0)
opset(ANMULF, r0)
opset(ANMULD, r0)
opset(AMULAF, r0)
opset(AMULAD, r0)
opset(AMULSF, r0)
opset(AMULSD, r0)
opset(ANMULAF, r0)
opset(ANMULAD, r0)
opset(ANMULSF, r0)
opset(ANMULSD, r0)
opset(AFMULAF, r0)
opset(AFMULAD, r0)
opset(AFMULSF, r0)
opset(AFMULSD, r0)
opset(AFNMULAF, r0)
opset(AFNMULAD, r0)
opset(AFNMULSF, r0)
opset(AFNMULSD, r0)
opset(ADIVF, r0)
opset(ADIVD, r0)
case ANEGF:
opset(ANEGD, r0)
opset(ASQRTF, r0)
opset(ASQRTD, r0)
opset(AMOVFD, r0)
opset(AMOVDF, r0)
opset(AABSF, r0)
opset(AABSD, r0)
case ACMPF:
opset(ACMPD, r0)
case AMOVF:
opset(AMOVD, r0)
case AMOVFW:
opset(AMOVDW, r0)
case AMOVWF:
opset(AMOVWD, r0)
case AMULL:
opset(AMULAL, r0)
opset(AMULLU, r0)
opset(AMULALU, r0)
case AMULWT:
opset(AMULWB, r0)
opset(AMULBB, r0)
opset(AMMUL, r0)
case AMULAWT:
opset(AMULAWB, r0)
opset(AMULABB, r0)
opset(AMULS, r0)
opset(AMMULA, r0)
opset(AMMULS, r0)
case ABFX:
opset(ABFXU, r0)
opset(ABFC, r0)
opset(ABFI, r0)
case ACLZ:
opset(AREV, r0)
opset(AREV16, r0)
opset(AREVSH, r0)
opset(ARBIT, r0)
case AXTAB:
opset(AXTAH, r0)
opset(AXTABU, r0)
opset(AXTAHU, r0)
case ALDREX,
ASTREX,
ALDREXD,
ASTREXD,
ADMB,
APLD,
AAND,
AMULA,
obj.AUNDEF,
obj.AFUNCDATA,
obj.APCDATA,
obj.ANOP:
break
}
}
}
func (c *ctxt5) asmout(p *obj.Prog, o *Optab, out []uint32) {
c.printp = p
o1 := uint32(0)
o2 := uint32(0)
o3 := uint32(0)
o4 := uint32(0)
o5 := uint32(0)
o6 := uint32(0)
if false { /*debug['P']*/
fmt.Printf("%x: %v\ttype %d\n", uint32(p.Pc), p, o.type_)
}
switch o.type_ {
default:
c.ctxt.Diag("%v: unknown asm %d", p, o.type_)
case 0: /* pseudo ops */
if false { /*debug['G']*/
fmt.Printf("%x: %s: arm\n", uint32(p.Pc), p.From.Sym.Name)
}
case 1: /* op R,[R],R */
o1 = c.oprrr(p, p.As, int(p.Scond))
rf := int(p.From.Reg)
rt := int(p.To.Reg)
r := int(p.Reg)
if p.To.Type == obj.TYPE_NONE {
rt = 0
}
if p.As == AMOVB || p.As == AMOVH || p.As == AMOVW || p.As == AMVN {
r = 0
} else if r == 0 {
r = rt
}
o1 |= (uint32(rf)&15)<<0 | (uint32(r)&15)<<16 | (uint32(rt)&15)<<12
case 2: /* movbu $I,[R],R */
c.aclass(&p.From)
o1 = c.oprrr(p, p.As, int(p.Scond))
o1 |= uint32(immrot(uint32(c.instoffset)))
rt := int(p.To.Reg)
r := int(p.Reg)
if p.To.Type == obj.TYPE_NONE {
rt = 0
}
if p.As == AMOVW || p.As == AMVN {
r = 0
} else if r == 0 {
r = rt
}
o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12
case 106: /* op $I,R,R where I can be decomposed into 2 immediates */
c.aclass(&p.From)
r := int(p.Reg)
rt := int(p.To.Reg)
if r == 0 {
r = rt
}
x, y := immrot2a(uint32(c.instoffset))
var as2 obj.As
switch p.As {
case AADD, ASUB, AORR, AEOR, ABIC:
as2 = p.As // ADD, SUB, ORR, EOR, BIC
case ARSB:
as2 = AADD // RSB -> RSB/ADD pair
case AADC:
as2 = AADD // ADC -> ADC/ADD pair
case ASBC:
as2 = ASUB // SBC -> SBC/SUB pair
case ARSC:
as2 = AADD // RSC -> RSC/ADD pair
default:
c.ctxt.Diag("unknown second op for %v", p)
}
o1 = c.oprrr(p, p.As, int(p.Scond))
o2 = c.oprrr(p, as2, int(p.Scond))
o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12
o2 |= (uint32(rt)&15)<<16 | (uint32(rt)&15)<<12
o1 |= x
o2 |= y
case 107: /* op $I,R,R where I can be decomposed into 2 immediates */
c.aclass(&p.From)
r := int(p.Reg)
rt := int(p.To.Reg)
if r == 0 {
r = rt
}
y, x := immrot2s(uint32(c.instoffset))
var as2 obj.As
switch p.As {
case AADD:
as2 = ASUB // ADD -> ADD/SUB pair
case ASUB:
as2 = AADD // SUB -> SUB/ADD pair
case ARSB:
as2 = ASUB // RSB -> RSB/SUB pair
case AADC:
as2 = ASUB // ADC -> ADC/SUB pair
case ASBC:
as2 = AADD // SBC -> SBC/ADD pair
case ARSC:
as2 = ASUB // RSC -> RSC/SUB pair
default:
c.ctxt.Diag("unknown second op for %v", p)
}
o1 = c.oprrr(p, p.As, int(p.Scond))
o2 = c.oprrr(p, as2, int(p.Scond))
o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12
o2 |= (uint32(rt)&15)<<16 | (uint32(rt)&15)<<12
o1 |= y
o2 |= x
case 3: /* add R<<[IR],[R],R */
o1 = c.mov(p)
case 4: /* MOVW $off(R), R -> add $off,[R],R */
c.aclass(&p.From)
if c.instoffset < 0 {
o1 = c.oprrr(p, ASUB, int(p.Scond))
o1 |= uint32(immrot(uint32(-c.instoffset)))
} else {
o1 = c.oprrr(p, AADD, int(p.Scond))
o1 |= uint32(immrot(uint32(c.instoffset)))
}
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o1 |= (uint32(r) & 15) << 16
o1 |= (uint32(p.To.Reg) & 15) << 12
case 5: /* bra s */
o1 = c.opbra(p, p.As, int(p.Scond))
v := int32(-8)
if p.To.Sym != nil {
rel := obj.Addrel(c.cursym)
rel.Off = int32(c.pc)
rel.Siz = 4
rel.Sym = p.To.Sym
v += int32(p.To.Offset)
rel.Add = int64(o1) | (int64(v)>>2)&0xffffff
rel.Type = objabi.R_CALLARM
break
}
if p.To.Target() != nil {
v = int32((p.To.Target().Pc - c.pc) - 8)
}
o1 |= (uint32(v) >> 2) & 0xffffff
case 6: /* b ,O(R) -> add $O,R,PC */
c.aclass(&p.To)
o1 = c.oprrr(p, AADD, int(p.Scond))
o1 |= uint32(immrot(uint32(c.instoffset)))
o1 |= (uint32(p.To.Reg) & 15) << 16
o1 |= (REGPC & 15) << 12
case 7: /* bl (R) -> blx R */
c.aclass(&p.To)
if c.instoffset != 0 {
c.ctxt.Diag("%v: doesn't support BL offset(REG) with non-zero offset %d", p, c.instoffset)
}
o1 = c.oprrr(p, ABL, int(p.Scond))
o1 |= (uint32(p.To.Reg) & 15) << 0
rel := obj.Addrel(c.cursym)
rel.Off = int32(c.pc)
rel.Siz = 0
rel.Type = objabi.R_CALLIND
case 8: /* sll $c,[R],R -> mov (R<<$c),R */
c.aclass(&p.From)
o1 = c.oprrr(p, p.As, int(p.Scond))
r := int(p.Reg)
if r == 0 {
r = int(p.To.Reg)
}
o1 |= (uint32(r) & 15) << 0
o1 |= uint32((c.instoffset & 31) << 7)
o1 |= (uint32(p.To.Reg) & 15) << 12
case 9: /* sll R,[R],R -> mov (R<<R),R */
o1 = c.oprrr(p, p.As, int(p.Scond))
r := int(p.Reg)
if r == 0 {
r = int(p.To.Reg)
}
o1 |= (uint32(r) & 15) << 0
o1 |= (uint32(p.From.Reg)&15)<<8 | 1<<4
o1 |= (uint32(p.To.Reg) & 15) << 12
case 10: /* swi [$con] */
o1 = c.oprrr(p, p.As, int(p.Scond))
if p.To.Type != obj.TYPE_NONE {
c.aclass(&p.To)
o1 |= uint32(c.instoffset & 0xffffff)
}
case 11: /* word */
c.aclass(&p.To)
o1 = uint32(c.instoffset)
if p.To.Sym != nil {
// This case happens with words generated
// in the PC stream as part of the literal pool (c.pool).
rel := obj.Addrel(c.cursym)
rel.Off = int32(c.pc)
rel.Siz = 4
rel.Sym = p.To.Sym
rel.Add = p.To.Offset
if c.ctxt.Flag_shared {
if p.To.Name == obj.NAME_GOTREF {
rel.Type = objabi.R_GOTPCREL
} else {
rel.Type = objabi.R_PCREL
}
rel.Add += c.pc - p.Rel.Pc - 8
} else {
rel.Type = objabi.R_ADDR
}
o1 = 0
}
case 12: /* movw $lcon, reg */
if o.a1 == C_SCON {
o1 = c.omvs(p, &p.From, int(p.To.Reg))
} else if p.As == AMVN {
o1 = c.omvr(p, &p.From, int(p.To.Reg))
} else {
o1 = c.omvl(p, &p.From, int(p.To.Reg))
}
if o.flag&LPCREL != 0 {
o2 = c.oprrr(p, AADD, int(p.Scond)) | (uint32(p.To.Reg)&15)<<0 | (REGPC&15)<<16 | (uint32(p.To.Reg)&15)<<12
}
case 13: /* op $lcon, [R], R */
if o.a1 == C_SCON {
o1 = c.omvs(p, &p.From, REGTMP)
} else {
o1 = c.omvl(p, &p.From, REGTMP)
}
if o1 == 0 {
break
}
o2 = c.oprrr(p, p.As, int(p.Scond))
o2 |= REGTMP & 15
r := int(p.Reg)
if p.As == AMVN {
r = 0
} else if r == 0 {
r = int(p.To.Reg)
}
o2 |= (uint32(r) & 15) << 16
if p.To.Type != obj.TYPE_NONE {
o2 |= (uint32(p.To.Reg) & 15) << 12
}
case 14: /* movb/movbu/movh/movhu R,R */
o1 = c.oprrr(p, ASLL, int(p.Scond))
if p.As == AMOVBU || p.As == AMOVHU {
o2 = c.oprrr(p, ASRL, int(p.Scond))
} else {
o2 = c.oprrr(p, ASRA, int(p.Scond))
}
r := int(p.To.Reg)
o1 |= (uint32(p.From.Reg)&15)<<0 | (uint32(r)&15)<<12
o2 |= uint32(r)&15 | (uint32(r)&15)<<12
if p.As == AMOVB || p.As == AMOVBS || p.As == AMOVBU {
o1 |= 24 << 7
o2 |= 24 << 7
} else {
o1 |= 16 << 7
o2 |= 16 << 7
}
case 15: /* mul r,[r,]r */
o1 = c.oprrr(p, p.As, int(p.Scond))
rf := int(p.From.Reg)
rt := int(p.To.Reg)
r := int(p.Reg)
if r == 0 {
r = rt
}
o1 |= (uint32(rf)&15)<<8 | (uint32(r)&15)<<0 | (uint32(rt)&15)<<16
case 16: /* div r,[r,]r */
o1 = 0xf << 28
o2 = 0
case 17:
o1 = c.oprrr(p, p.As, int(p.Scond))
rf := int(p.From.Reg)
rt := int(p.To.Reg)
rt2 := int(p.To.Offset)
r := int(p.Reg)
o1 |= (uint32(rf)&15)<<8 | (uint32(r)&15)<<0 | (uint32(rt)&15)<<16 | (uint32(rt2)&15)<<12
case 18: /* BFX/BFXU/BFC/BFI */
o1 = c.oprrr(p, p.As, int(p.Scond))
rt := int(p.To.Reg)
r := int(p.Reg)
if r == 0 {
r = rt
} else if p.As == ABFC { // only "BFC $width, $lsb, Reg" is accepted, p.Reg must be 0
c.ctxt.Diag("illegal combination: %v", p)
}
if p.GetFrom3() == nil || p.GetFrom3().Type != obj.TYPE_CONST {
c.ctxt.Diag("%v: missing or wrong LSB", p)
break
}
lsb := p.GetFrom3().Offset
width := p.From.Offset
if lsb < 0 || lsb > 31 || width <= 0 || (lsb+width) > 32 {
c.ctxt.Diag("%v: wrong width or LSB", p)
}
switch p.As {
case ABFX, ABFXU: // (width-1) is encoded
o1 |= (uint32(r)&15)<<0 | (uint32(rt)&15)<<12 | uint32(lsb)<<7 | uint32(width-1)<<16
case ABFC, ABFI: // MSB is encoded
o1 |= (uint32(r)&15)<<0 | (uint32(rt)&15)<<12 | uint32(lsb)<<7 | uint32(lsb+width-1)<<16
default:
c.ctxt.Diag("illegal combination: %v", p)
}
case 20: /* mov/movb/movbu R,O(R) */
c.aclass(&p.To)
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
o1 = c.osr(p.As, int(p.From.Reg), int32(c.instoffset), r, int(p.Scond))
case 21: /* mov/movbu O(R),R -> lr */
c.aclass(&p.From)
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o1 = c.olr(int32(c.instoffset), r, int(p.To.Reg), int(p.Scond))
if p.As != AMOVW {
o1 |= 1 << 22
}
case 22: /* XTAB R@>i, [R], R */
o1 = c.oprrr(p, p.As, int(p.Scond))
switch p.From.Offset &^ 0xf {
// only 0/8/16/24 bits rotation is accepted
case SHIFT_RR, SHIFT_RR | 8<<7, SHIFT_RR | 16<<7, SHIFT_RR | 24<<7:
o1 |= uint32(p.From.Offset) & 0xc0f
default:
c.ctxt.Diag("illegal shift: %v", p)
}
rt := p.To.Reg
r := p.Reg
if r == 0 {
r = rt
}
o1 |= (uint32(rt)&15)<<12 | (uint32(r)&15)<<16
case 23: /* MOVW/MOVB/MOVH R@>i, R */
switch p.As {
case AMOVW:
o1 = c.mov(p)
case AMOVBU, AMOVBS, AMOVB, AMOVHU, AMOVHS, AMOVH:
o1 = c.movxt(p)
default:
c.ctxt.Diag("illegal combination: %v", p)
}
case 30: /* mov/movb/movbu R,L(R) */
o1 = c.omvl(p, &p.To, REGTMP)
if o1 == 0 {
break
}
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
o2 = c.osrr(int(p.From.Reg), REGTMP&15, r, int(p.Scond))
if p.As != AMOVW {
o2 |= 1 << 22
}
case 31: /* mov/movbu L(R),R -> lr[b] */
o1 = c.omvl(p, &p.From, REGTMP)
if o1 == 0 {
break
}
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o2 = c.olrr(REGTMP&15, r, int(p.To.Reg), int(p.Scond))
if p.As == AMOVBU || p.As == AMOVBS || p.As == AMOVB {
o2 |= 1 << 22
}
case 34: /* mov $lacon,R */
o1 = c.omvl(p, &p.From, REGTMP)
if o1 == 0 {
break
}
o2 = c.oprrr(p, AADD, int(p.Scond))
o2 |= REGTMP & 15
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o2 |= (uint32(r) & 15) << 16
if p.To.Type != obj.TYPE_NONE {
o2 |= (uint32(p.To.Reg) & 15) << 12
}
case 35: /* mov PSR,R */
o1 = 2<<23 | 0xf<<16 | 0<<0
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
o1 |= (uint32(p.From.Reg) & 1) << 22
o1 |= (uint32(p.To.Reg) & 15) << 12
case 36: /* mov R,PSR */
o1 = 2<<23 | 0x2cf<<12 | 0<<4
if p.Scond&C_FBIT != 0 {
o1 ^= 0x010 << 12
}
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
o1 |= (uint32(p.To.Reg) & 1) << 22
o1 |= (uint32(p.From.Reg) & 15) << 0
case 37: /* mov $con,PSR */
c.aclass(&p.From)
o1 = 2<<23 | 0x2cf<<12 | 0<<4
if p.Scond&C_FBIT != 0 {
o1 ^= 0x010 << 12
}
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
o1 |= uint32(immrot(uint32(c.instoffset)))
o1 |= (uint32(p.To.Reg) & 1) << 22
o1 |= (uint32(p.From.Reg) & 15) << 0
case 38, 39:
switch o.type_ {
case 38: /* movm $con,oreg -> stm */
o1 = 0x4 << 25
o1 |= uint32(p.From.Offset & 0xffff)
o1 |= (uint32(p.To.Reg) & 15) << 16
c.aclass(&p.To)
case 39: /* movm oreg,$con -> ldm */
o1 = 0x4<<25 | 1<<20
o1 |= uint32(p.To.Offset & 0xffff)
o1 |= (uint32(p.From.Reg) & 15) << 16
c.aclass(&p.From)
}
if c.instoffset != 0 {
c.ctxt.Diag("offset must be zero in MOVM; %v", p)
}
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
if p.Scond&C_PBIT != 0 {
o1 |= 1 << 24
}
if p.Scond&C_UBIT != 0 {
o1 |= 1 << 23
}
if p.Scond&C_WBIT != 0 {
o1 |= 1 << 21
}
case 40: /* swp oreg,reg,reg */
c.aclass(&p.From)
if c.instoffset != 0 {
c.ctxt.Diag("offset must be zero in SWP")
}
o1 = 0x2<<23 | 0x9<<4
if p.As != ASWPW {
o1 |= 1 << 22
}
o1 |= (uint32(p.From.Reg) & 15) << 16
o1 |= (uint32(p.Reg) & 15) << 0
o1 |= (uint32(p.To.Reg) & 15) << 12
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
case 41: /* rfe -> movm.s.w.u 0(r13),[r15] */
o1 = 0xe8fd8000
case 50: /* floating point store */
v := c.regoff(&p.To)
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
o1 = c.ofsr(p.As, int(p.From.Reg), v, r, int(p.Scond), p)
case 51: /* floating point load */
v := c.regoff(&p.From)
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o1 = c.ofsr(p.As, int(p.To.Reg), v, r, int(p.Scond), p) | 1<<20
case 52: /* floating point store, int32 offset UGLY */
o1 = c.omvl(p, &p.To, REGTMP)
if o1 == 0 {
break
}
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
o2 = c.oprrr(p, AADD, int(p.Scond)) | (REGTMP&15)<<12 | (REGTMP&15)<<16 | (uint32(r)&15)<<0
o3 = c.ofsr(p.As, int(p.From.Reg), 0, REGTMP, int(p.Scond), p)
case 53: /* floating point load, int32 offset UGLY */
o1 = c.omvl(p, &p.From, REGTMP)
if o1 == 0 {
break
}
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o2 = c.oprrr(p, AADD, int(p.Scond)) | (REGTMP&15)<<12 | (REGTMP&15)<<16 | (uint32(r)&15)<<0
o3 = c.ofsr(p.As, int(p.To.Reg), 0, (REGTMP&15), int(p.Scond), p) | 1<<20
case 54: /* floating point arith */
o1 = c.oprrr(p, p.As, int(p.Scond))
rf := int(p.From.Reg)
rt := int(p.To.Reg)
r := int(p.Reg)
if r == 0 {
switch p.As {
case AMULAD, AMULAF, AMULSF, AMULSD, ANMULAF, ANMULAD, ANMULSF, ANMULSD,
AFMULAD, AFMULAF, AFMULSF, AFMULSD, AFNMULAF, AFNMULAD, AFNMULSF, AFNMULSD:
c.ctxt.Diag("illegal combination: %v", p)
default:
r = rt
}
}
o1 |= (uint32(rf)&15)<<0 | (uint32(r)&15)<<16 | (uint32(rt)&15)<<12
case 55: /* negf freg, freg */
o1 = c.oprrr(p, p.As, int(p.Scond))
rf := int(p.From.Reg)
rt := int(p.To.Reg)
o1 |= (uint32(rf)&15)<<0 | (uint32(rt)&15)<<12
case 56: /* move to FP[CS]R */
o1 = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0xee1<<16 | 0xa1<<4
o1 |= (uint32(p.From.Reg) & 15) << 12
case 57: /* move from FP[CS]R */
o1 = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0xef1<<16 | 0xa1<<4
o1 |= (uint32(p.To.Reg) & 15) << 12
case 58: /* movbu R,R */
o1 = c.oprrr(p, AAND, int(p.Scond))
o1 |= uint32(immrot(0xff))
rt := int(p.To.Reg)
r := int(p.From.Reg)
if p.To.Type == obj.TYPE_NONE {
rt = 0
}
if r == 0 {
r = rt
}
o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12
case 59: /* movw/bu R<<I(R),R -> ldr indexed */
if p.From.Reg == 0 {
c.ctxt.Diag("source operand is not a memory address: %v", p)
break
}
if p.From.Offset&(1<<4) != 0 {
c.ctxt.Diag("bad shift in LDR")
break
}
o1 = c.olrr(int(p.From.Offset), int(p.From.Reg), int(p.To.Reg), int(p.Scond))
if p.As == AMOVBU {
o1 |= 1 << 22
}
case 60: /* movb R(R),R -> ldrsb indexed */
if p.From.Reg == 0 {
c.ctxt.Diag("source operand is not a memory address: %v", p)
break
}
if p.From.Offset&(^0xf) != 0 {
c.ctxt.Diag("bad shift: %v", p)
break
}
o1 = c.olhrr(int(p.From.Offset), int(p.From.Reg), int(p.To.Reg), int(p.Scond))
switch p.As {
case AMOVB, AMOVBS:
o1 ^= 1<<5 | 1<<6
case AMOVH, AMOVHS:
o1 ^= 1 << 6
default:
}
if p.Scond&C_UBIT != 0 {
o1 &^= 1 << 23
}
case 61: /* movw/b/bu R,R<<[IR](R) -> str indexed */
if p.To.Reg == 0 {
c.ctxt.Diag("MOV to shifter operand")
}
o1 = c.osrr(int(p.From.Reg), int(p.To.Offset), int(p.To.Reg), int(p.Scond))
if p.As == AMOVB || p.As == AMOVBS || p.As == AMOVBU {
o1 |= 1 << 22
}
case 62: /* MOVH/MOVHS/MOVHU Reg, Reg<<0(Reg) -> strh */
if p.To.Reg == 0 {
c.ctxt.Diag("MOV to shifter operand")
}
if p.To.Offset&(^0xf) != 0 {
c.ctxt.Diag("bad shift: %v", p)
}
o1 = c.olhrr(int(p.To.Offset), int(p.To.Reg), int(p.From.Reg), int(p.Scond))
o1 ^= 1 << 20
if p.Scond&C_UBIT != 0 {
o1 &^= 1 << 23
}
/* reloc ops */
case 64: /* mov/movb/movbu R,addr */
o1 = c.omvl(p, &p.To, REGTMP)
if o1 == 0 {
break
}
o2 = c.osr(p.As, int(p.From.Reg), 0, REGTMP, int(p.Scond))
if o.flag&LPCREL != 0 {
o3 = o2
o2 = c.oprrr(p, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12
}
case 65: /* mov/movbu addr,R */
o1 = c.omvl(p, &p.From, REGTMP)
if o1 == 0 {
break
}
o2 = c.olr(0, REGTMP, int(p.To.Reg), int(p.Scond))
if p.As == AMOVBU || p.As == AMOVBS || p.As == AMOVB {
o2 |= 1 << 22
}
if o.flag&LPCREL != 0 {
o3 = o2
o2 = c.oprrr(p, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12
}
case 101: /* movw tlsvar,R, local exec*/
o1 = c.omvl(p, &p.From, int(p.To.Reg))
case 102: /* movw tlsvar,R, initial exec*/
o1 = c.omvl(p, &p.From, int(p.To.Reg))
o2 = c.olrr(int(p.To.Reg)&15, (REGPC & 15), int(p.To.Reg), int(p.Scond))
case 103: /* word tlsvar, local exec */
if p.To.Sym == nil {
c.ctxt.Diag("nil sym in tls %v", p)
}
if p.To.Offset != 0 {
c.ctxt.Diag("offset against tls var in %v", p)
}
// This case happens with words generated in the PC stream as part of
// the literal c.pool.
rel := obj.Addrel(c.cursym)
rel.Off = int32(c.pc)
rel.Siz = 4
rel.Sym = p.To.Sym
rel.Type = objabi.R_TLS_LE
o1 = 0
case 104: /* word tlsvar, initial exec */
if p.To.Sym == nil {
c.ctxt.Diag("nil sym in tls %v", p)
}
if p.To.Offset != 0 {
c.ctxt.Diag("offset against tls var in %v", p)
}
rel := obj.Addrel(c.cursym)
rel.Off = int32(c.pc)
rel.Siz = 4
rel.Sym = p.To.Sym
rel.Type = objabi.R_TLS_IE
rel.Add = c.pc - p.Rel.Pc - 8 - int64(rel.Siz)
case 68: /* floating point store -> ADDR */
o1 = c.omvl(p, &p.To, REGTMP)
if o1 == 0 {
break
}
o2 = c.ofsr(p.As, int(p.From.Reg), 0, REGTMP, int(p.Scond), p)
if o.flag&LPCREL != 0 {
o3 = o2
o2 = c.oprrr(p, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12
}
case 69: /* floating point load <- ADDR */
o1 = c.omvl(p, &p.From, REGTMP)
if o1 == 0 {
break
}
o2 = c.ofsr(p.As, int(p.To.Reg), 0, (REGTMP&15), int(p.Scond), p) | 1<<20
if o.flag&LPCREL != 0 {
o3 = o2
o2 = c.oprrr(p, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12
}
/* ArmV4 ops: */
case 70: /* movh/movhu R,O(R) -> strh */
c.aclass(&p.To)
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
o1 = c.oshr(int(p.From.Reg), int32(c.instoffset), r, int(p.Scond))
case 71: /* movb/movh/movhu O(R),R -> ldrsb/ldrsh/ldrh */
c.aclass(&p.From)
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o1 = c.olhr(int32(c.instoffset), r, int(p.To.Reg), int(p.Scond))
if p.As == AMOVB || p.As == AMOVBS {
o1 ^= 1<<5 | 1<<6
} else if p.As == AMOVH || p.As == AMOVHS {
o1 ^= (1 << 6)
}
case 72: /* movh/movhu R,L(R) -> strh */
o1 = c.omvl(p, &p.To, REGTMP)
if o1 == 0 {
break
}
r := int(p.To.Reg)
if r == 0 {
r = int(o.param)
}
o2 = c.oshrr(int(p.From.Reg), REGTMP&15, r, int(p.Scond))
case 73: /* movb/movh/movhu L(R),R -> ldrsb/ldrsh/ldrh */
o1 = c.omvl(p, &p.From, REGTMP)
if o1 == 0 {
break
}
r := int(p.From.Reg)
if r == 0 {
r = int(o.param)
}
o2 = c.olhrr(REGTMP&15, r, int(p.To.Reg), int(p.Scond))
if p.As == AMOVB || p.As == AMOVBS {
o2 ^= 1<<5 | 1<<6
} else if p.As == AMOVH || p.As == AMOVHS {
o2 ^= (1 << 6)
}
case 74: /* bx $I */
c.ctxt.Diag("ABX $I")
case 75: /* bx O(R) */
c.aclass(&p.To)
if c.instoffset != 0 {
c.ctxt.Diag("non-zero offset in ABX")
}
/*
o1 = c.oprrr(p, AADD, p->scond) | immrot(0) | ((REGPC&15)<<16) | ((REGLINK&15)<<12); // mov PC, LR
o2 = (((p->scond&C_SCOND) ^ C_SCOND_XOR)<<28) | (0x12fff<<8) | (1<<4) | ((p->to.reg&15) << 0); // BX R
*/
// p->to.reg may be REGLINK
o1 = c.oprrr(p, AADD, int(p.Scond))
o1 |= uint32(immrot(uint32(c.instoffset)))
o1 |= (uint32(p.To.Reg) & 15) << 16
o1 |= (REGTMP & 15) << 12
o2 = c.oprrr(p, AADD, int(p.Scond)) | uint32(immrot(0)) | (REGPC&15)<<16 | (REGLINK&15)<<12 // mov PC, LR
o3 = ((uint32(p.Scond)&C_SCOND)^C_SCOND_XOR)<<28 | 0x12fff<<8 | 1<<4 | REGTMP&15 // BX Rtmp
case 76: /* bx O(R) when returning from fn*/
c.ctxt.Diag("ABXRET")
case 77: /* ldrex oreg,reg */
c.aclass(&p.From)
if c.instoffset != 0 {
c.ctxt.Diag("offset must be zero in LDREX")
}
o1 = 0x19<<20 | 0xf9f
o1 |= (uint32(p.From.Reg) & 15) << 16
o1 |= (uint32(p.To.Reg) & 15) << 12
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
case 78: /* strex reg,oreg,reg */
c.aclass(&p.From)
if c.instoffset != 0 {
c.ctxt.Diag("offset must be zero in STREX")
}
if p.To.Reg == p.From.Reg || p.To.Reg == p.Reg {
c.ctxt.Diag("cannot use same register as both source and destination: %v", p)
}
o1 = 0x18<<20 | 0xf90
o1 |= (uint32(p.From.Reg) & 15) << 16
o1 |= (uint32(p.Reg) & 15) << 0
o1 |= (uint32(p.To.Reg) & 15) << 12
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
case 80: /* fmov zfcon,freg */
if p.As == AMOVD {
o1 = 0xeeb00b00 // VMOV imm 64
o2 = c.oprrr(p, ASUBD, int(p.Scond))
} else {
o1 = 0x0eb00a00 // VMOV imm 32
o2 = c.oprrr(p, ASUBF, int(p.Scond))
}
v := int32(0x70) // 1.0
r := (int(p.To.Reg) & 15) << 0
// movf $1.0, r
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
o1 |= (uint32(r) & 15) << 12
o1 |= (uint32(v) & 0xf) << 0
o1 |= (uint32(v) & 0xf0) << 12
// subf r,r,r
o2 |= (uint32(r)&15)<<0 | (uint32(r)&15)<<16 | (uint32(r)&15)<<12
case 81: /* fmov sfcon,freg */
o1 = 0x0eb00a00 // VMOV imm 32
if p.As == AMOVD {
o1 = 0xeeb00b00 // VMOV imm 64
}
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
o1 |= (uint32(p.To.Reg) & 15) << 12
v := int32(c.chipfloat5(p.From.Val.(float64)))
o1 |= (uint32(v) & 0xf) << 0
o1 |= (uint32(v) & 0xf0) << 12
case 82: /* fcmp freg,freg, */
o1 = c.oprrr(p, p.As, int(p.Scond))
o1 |= (uint32(p.Reg)&15)<<12 | (uint32(p.From.Reg)&15)<<0
o2 = 0x0ef1fa10 // VMRS R15
o2 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
case 83: /* fcmp freg,, */
o1 = c.oprrr(p, p.As, int(p.Scond))
o1 |= (uint32(p.From.Reg)&15)<<12 | 1<<16
o2 = 0x0ef1fa10 // VMRS R15
o2 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
case 84: /* movfw freg,freg - truncate float-to-fix */
o1 = c.oprrr(p, p.As, int(p.Scond))
o1 |= (uint32(p.From.Reg) & 15) << 0
o1 |= (uint32(p.To.Reg) & 15) << 12
case 85: /* movwf freg,freg - fix-to-float */
o1 = c.oprrr(p, p.As, int(p.Scond))
o1 |= (uint32(p.From.Reg) & 15) << 0
o1 |= (uint32(p.To.Reg) & 15) << 12
// macro for movfw freg,FTMP; movw FTMP,reg
case 86: /* movfw freg,reg - truncate float-to-fix */
o1 = c.oprrr(p, p.As, int(p.Scond))
o1 |= (uint32(p.From.Reg) & 15) << 0
o1 |= (FREGTMP & 15) << 12
o2 = c.oprrr(p, -AMOVFW, int(p.Scond))
o2 |= (FREGTMP & 15) << 16
o2 |= (uint32(p.To.Reg) & 15) << 12
// macro for movw reg,FTMP; movwf FTMP,freg
case 87: /* movwf reg,freg - fix-to-float */
o1 = c.oprrr(p, -AMOVWF, int(p.Scond))
o1 |= (uint32(p.From.Reg) & 15) << 12
o1 |= (FREGTMP & 15) << 16
o2 = c.oprrr(p, p.As, int(p.Scond))
o2 |= (FREGTMP & 15) << 0
o2 |= (uint32(p.To.Reg) & 15) << 12
case 88: /* movw reg,freg */
o1 = c.oprrr(p, -AMOVWF, int(p.Scond))
o1 |= (uint32(p.From.Reg) & 15) << 12
o1 |= (uint32(p.To.Reg) & 15) << 16
case 89: /* movw freg,reg */
o1 = c.oprrr(p, -AMOVFW, int(p.Scond))
o1 |= (uint32(p.From.Reg) & 15) << 16
o1 |= (uint32(p.To.Reg) & 15) << 12
case 91: /* ldrexd oreg,reg */
c.aclass(&p.From)
if c.instoffset != 0 {
c.ctxt.Diag("offset must be zero in LDREX")
}
o1 = 0x1b<<20 | 0xf9f
o1 |= (uint32(p.From.Reg) & 15) << 16
o1 |= (uint32(p.To.Reg) & 15) << 12
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
case 92: /* strexd reg,oreg,reg */
c.aclass(&p.From)
if c.instoffset != 0 {
c.ctxt.Diag("offset must be zero in STREX")
}
if p.Reg&1 != 0 {
c.ctxt.Diag("source register must be even in STREXD: %v", p)
}
if p.To.Reg == p.From.Reg || p.To.Reg == p.Reg || p.To.Reg == p.Reg+1 {
c.ctxt.Diag("cannot use same register as both source and destination: %v", p)
}
o1 = 0x1a<<20 | 0xf90
o1 |= (uint32(p.From.Reg) & 15) << 16
o1 |= (uint32(p.Reg) & 15) << 0
o1 |= (uint32(p.To.Reg) & 15) << 12
o1 |= ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
case 93: /* movb/movh/movhu addr,R -> ldrsb/ldrsh/ldrh */
o1 = c.omvl(p, &p.From, REGTMP)
if o1 == 0 {
break
}
o2 = c.olhr(0, REGTMP, int(p.To.Reg), int(p.Scond))
if p.As == AMOVB || p.As == AMOVBS {
o2 ^= 1<<5 | 1<<6
} else if p.As == AMOVH || p.As == AMOVHS {
o2 ^= (1 << 6)
}
if o.flag&LPCREL != 0 {
o3 = o2
o2 = c.oprrr(p, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12
}
case 94: /* movh/movhu R,addr -> strh */
o1 = c.omvl(p, &p.To, REGTMP)
if o1 == 0 {
break
}
o2 = c.oshr(int(p.From.Reg), 0, REGTMP, int(p.Scond))
if o.flag&LPCREL != 0 {
o3 = o2
o2 = c.oprrr(p, AADD, int(p.Scond)) | REGTMP&15 | (REGPC&15)<<16 | (REGTMP&15)<<12
}
case 95: /* PLD off(reg) */
o1 = 0xf5d0f000
o1 |= (uint32(p.From.Reg) & 15) << 16
if p.From.Offset < 0 {
o1 &^= (1 << 23)
o1 |= uint32((-p.From.Offset) & 0xfff)
} else {
o1 |= uint32(p.From.Offset & 0xfff)
}
// This is supposed to be something that stops execution.
// It's not supposed to be reached, ever, but if it is, we'd
// like to be able to tell how we got there. Assemble as
// 0xf7fabcfd which is guaranteed to raise undefined instruction
// exception.
case 96: /* UNDEF */
o1 = 0xf7fabcfd
case 97: /* CLZ Rm, Rd */
o1 = c.oprrr(p, p.As, int(p.Scond))
o1 |= (uint32(p.To.Reg) & 15) << 12
o1 |= (uint32(p.From.Reg) & 15) << 0
case 98: /* MULW{T,B} Rs, Rm, Rd */
o1 = c.oprrr(p, p.As, int(p.Scond))
o1 |= (uint32(p.To.Reg) & 15) << 16
o1 |= (uint32(p.From.Reg) & 15) << 8
o1 |= (uint32(p.Reg) & 15) << 0
case 99: /* MULAW{T,B} Rs, Rm, Rn, Rd */
o1 = c.oprrr(p, p.As, int(p.Scond))
o1 |= (uint32(p.To.Reg) & 15) << 16
o1 |= (uint32(p.From.Reg) & 15) << 8
o1 |= (uint32(p.Reg) & 15) << 0
o1 |= uint32((p.To.Offset & 15) << 12)
case 105: /* divhw r,[r,]r */
o1 = c.oprrr(p, p.As, int(p.Scond))
rf := int(p.From.Reg)
rt := int(p.To.Reg)
r := int(p.Reg)
if r == 0 {
r = rt
}
o1 |= (uint32(rf)&15)<<8 | (uint32(r)&15)<<0 | (uint32(rt)&15)<<16
case 110: /* dmb [mbop | $con] */
o1 = 0xf57ff050
mbop := uint32(0)
switch c.aclass(&p.From) {
case C_SPR:
for _, f := range mbOp {
if f.reg == p.From.Reg {
mbop = f.enc
break
}
}
case C_RCON:
for _, f := range mbOp {
enc := uint32(c.instoffset)
if f.enc == enc {
mbop = enc
break
}
}
case C_NONE:
mbop = 0xf
}
if mbop == 0 {
c.ctxt.Diag("illegal mb option:\n%v", p)
}
o1 |= mbop
}
out[0] = o1
out[1] = o2
out[2] = o3
out[3] = o4
out[4] = o5
out[5] = o6
}
func (c *ctxt5) movxt(p *obj.Prog) uint32 {
o1 := ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
switch p.As {
case AMOVB, AMOVBS:
o1 |= 0x6af<<16 | 0x7<<4
case AMOVH, AMOVHS:
o1 |= 0x6bf<<16 | 0x7<<4
case AMOVBU:
o1 |= 0x6ef<<16 | 0x7<<4
case AMOVHU:
o1 |= 0x6ff<<16 | 0x7<<4
default:
c.ctxt.Diag("illegal combination: %v", p)
}
switch p.From.Offset &^ 0xf {
// only 0/8/16/24 bits rotation is accepted
case SHIFT_RR, SHIFT_RR | 8<<7, SHIFT_RR | 16<<7, SHIFT_RR | 24<<7:
o1 |= uint32(p.From.Offset) & 0xc0f
default:
c.ctxt.Diag("illegal shift: %v", p)
}
o1 |= (uint32(p.To.Reg) & 15) << 12
return o1
}
func (c *ctxt5) mov(p *obj.Prog) uint32 {
c.aclass(&p.From)
o1 := c.oprrr(p, p.As, int(p.Scond))
o1 |= uint32(p.From.Offset)
rt := int(p.To.Reg)
if p.To.Type == obj.TYPE_NONE {
rt = 0
}
r := int(p.Reg)
if p.As == AMOVW || p.As == AMVN {
r = 0
} else if r == 0 {
r = rt
}
o1 |= (uint32(r)&15)<<16 | (uint32(rt)&15)<<12
return o1
}
func (c *ctxt5) oprrr(p *obj.Prog, a obj.As, sc int) uint32 {
o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28
if sc&C_SBIT != 0 {
o |= 1 << 20
}
switch a {
case ADIVHW:
return o | 0x71<<20 | 0xf<<12 | 0x1<<4
case ADIVUHW:
return o | 0x73<<20 | 0xf<<12 | 0x1<<4
case AMMUL:
return o | 0x75<<20 | 0xf<<12 | 0x1<<4
case AMULS:
return o | 0x6<<20 | 0x9<<4
case AMMULA:
return o | 0x75<<20 | 0x1<<4
case AMMULS:
return o | 0x75<<20 | 0xd<<4
case AMULU, AMUL:
return o | 0x0<<21 | 0x9<<4
case AMULA:
return o | 0x1<<21 | 0x9<<4
case AMULLU:
return o | 0x4<<21 | 0x9<<4
case AMULL:
return o | 0x6<<21 | 0x9<<4
case AMULALU:
return o | 0x5<<21 | 0x9<<4
case AMULAL:
return o | 0x7<<21 | 0x9<<4
case AAND:
return o | 0x0<<21
case AEOR:
return o | 0x1<<21
case ASUB:
return o | 0x2<<21
case ARSB:
return o | 0x3<<21
case AADD:
return o | 0x4<<21
case AADC:
return o | 0x5<<21
case ASBC:
return o | 0x6<<21
case ARSC:
return o | 0x7<<21
case ATST:
return o | 0x8<<21 | 1<<20
case ATEQ:
return o | 0x9<<21 | 1<<20
case ACMP:
return o | 0xa<<21 | 1<<20
case ACMN:
return o | 0xb<<21 | 1<<20
case AORR:
return o | 0xc<<21
case AMOVB, AMOVH, AMOVW:
if sc&(C_PBIT|C_WBIT) != 0 {
c.ctxt.Diag("invalid .P/.W suffix: %v", p)
}
return o | 0xd<<21
case ABIC:
return o | 0xe<<21
case AMVN:
return o | 0xf<<21
case ASLL:
return o | 0xd<<21 | 0<<5
case ASRL:
return o | 0xd<<21 | 1<<5
case ASRA:
return o | 0xd<<21 | 2<<5
case ASWI:
return o | 0xf<<24
case AADDD:
return o | 0xe<<24 | 0x3<<20 | 0xb<<8 | 0<<4
case AADDF:
return o | 0xe<<24 | 0x3<<20 | 0xa<<8 | 0<<4
case ASUBD:
return o | 0xe<<24 | 0x3<<20 | 0xb<<8 | 4<<4
case ASUBF:
return o | 0xe<<24 | 0x3<<20 | 0xa<<8 | 4<<4
case AMULD:
return o | 0xe<<24 | 0x2<<20 | 0xb<<8 | 0<<4
case AMULF:
return o | 0xe<<24 | 0x2<<20 | 0xa<<8 | 0<<4
case ANMULD:
return o | 0xe<<24 | 0x2<<20 | 0xb<<8 | 0x4<<4
case ANMULF:
return o | 0xe<<24 | 0x2<<20 | 0xa<<8 | 0x4<<4
case AMULAD:
return o | 0xe<<24 | 0xb<<8
case AMULAF:
return o | 0xe<<24 | 0xa<<8
case AMULSD:
return o | 0xe<<24 | 0xb<<8 | 0x4<<4
case AMULSF:
return o | 0xe<<24 | 0xa<<8 | 0x4<<4
case ANMULAD:
return o | 0xe<<24 | 0x1<<20 | 0xb<<8 | 0x4<<4
case ANMULAF:
return o | 0xe<<24 | 0x1<<20 | 0xa<<8 | 0x4<<4
case ANMULSD:
return o | 0xe<<24 | 0x1<<20 | 0xb<<8
case ANMULSF:
return o | 0xe<<24 | 0x1<<20 | 0xa<<8
case AFMULAD:
return o | 0xe<<24 | 0xa<<20 | 0xb<<8
case AFMULAF:
return o | 0xe<<24 | 0xa<<20 | 0xa<<8
case AFMULSD:
return o | 0xe<<24 | 0xa<<20 | 0xb<<8 | 0x4<<4
case AFMULSF:
return o | 0xe<<24 | 0xa<<20 | 0xa<<8 | 0x4<<4
case AFNMULAD:
return o | 0xe<<24 | 0x9<<20 | 0xb<<8 | 0x4<<4
case AFNMULAF:
return o | 0xe<<24 | 0x9<<20 | 0xa<<8 | 0x4<<4
case AFNMULSD:
return o | 0xe<<24 | 0x9<<20 | 0xb<<8
case AFNMULSF:
return o | 0xe<<24 | 0x9<<20 | 0xa<<8
case ADIVD:
return o | 0xe<<24 | 0x8<<20 | 0xb<<8 | 0<<4
case ADIVF:
return o | 0xe<<24 | 0x8<<20 | 0xa<<8 | 0<<4
case ASQRTD:
return o | 0xe<<24 | 0xb<<20 | 1<<16 | 0xb<<8 | 0xc<<4
case ASQRTF:
return o | 0xe<<24 | 0xb<<20 | 1<<16 | 0xa<<8 | 0xc<<4
case AABSD:
return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xb<<8 | 0xc<<4
case AABSF:
return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xa<<8 | 0xc<<4
case ANEGD:
return o | 0xe<<24 | 0xb<<20 | 1<<16 | 0xb<<8 | 0x4<<4
case ANEGF:
return o | 0xe<<24 | 0xb<<20 | 1<<16 | 0xa<<8 | 0x4<<4
case ACMPD:
return o | 0xe<<24 | 0xb<<20 | 4<<16 | 0xb<<8 | 0xc<<4
case ACMPF:
return o | 0xe<<24 | 0xb<<20 | 4<<16 | 0xa<<8 | 0xc<<4
case AMOVF:
return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xa<<8 | 4<<4
case AMOVD:
return o | 0xe<<24 | 0xb<<20 | 0<<16 | 0xb<<8 | 4<<4
case AMOVDF:
return o | 0xe<<24 | 0xb<<20 | 7<<16 | 0xa<<8 | 0xc<<4 | 1<<8 // dtof
case AMOVFD:
return o | 0xe<<24 | 0xb<<20 | 7<<16 | 0xa<<8 | 0xc<<4 | 0<<8 // dtof
case AMOVWF:
if sc&C_UBIT == 0 {
o |= 1 << 7 /* signed */
}
return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 0<<18 | 0<<8 // toint, double
case AMOVWD:
if sc&C_UBIT == 0 {
o |= 1 << 7 /* signed */
}
return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 0<<18 | 1<<8 // toint, double
case AMOVFW:
if sc&C_UBIT == 0 {
o |= 1 << 16 /* signed */
}
return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 1<<18 | 0<<8 | 1<<7 // toint, double, trunc
case AMOVDW:
if sc&C_UBIT == 0 {
o |= 1 << 16 /* signed */
}
return o | 0xe<<24 | 0xb<<20 | 8<<16 | 0xa<<8 | 4<<4 | 1<<18 | 1<<8 | 1<<7 // toint, double, trunc
case -AMOVWF: // copy WtoF
return o | 0xe<<24 | 0x0<<20 | 0xb<<8 | 1<<4
case -AMOVFW: // copy FtoW
return o | 0xe<<24 | 0x1<<20 | 0xb<<8 | 1<<4
case -ACMP: // cmp imm
return o | 0x3<<24 | 0x5<<20
case ABFX:
return o | 0x3d<<21 | 0x5<<4
case ABFXU:
return o | 0x3f<<21 | 0x5<<4
case ABFC:
return o | 0x3e<<21 | 0x1f
case ABFI:
return o | 0x3e<<21 | 0x1<<4
case AXTAB:
return o | 0x6a<<20 | 0x7<<4
case AXTAH:
return o | 0x6b<<20 | 0x7<<4
case AXTABU:
return o | 0x6e<<20 | 0x7<<4
case AXTAHU:
return o | 0x6f<<20 | 0x7<<4
// CLZ doesn't support .nil
case ACLZ:
return o&(0xf<<28) | 0x16f<<16 | 0xf1<<4
case AREV:
return o&(0xf<<28) | 0x6bf<<16 | 0xf3<<4
case AREV16:
return o&(0xf<<28) | 0x6bf<<16 | 0xfb<<4
case AREVSH:
return o&(0xf<<28) | 0x6ff<<16 | 0xfb<<4
case ARBIT:
return o&(0xf<<28) | 0x6ff<<16 | 0xf3<<4
case AMULWT:
return o&(0xf<<28) | 0x12<<20 | 0xe<<4
case AMULWB:
return o&(0xf<<28) | 0x12<<20 | 0xa<<4
case AMULBB:
return o&(0xf<<28) | 0x16<<20 | 0x8<<4
case AMULAWT:
return o&(0xf<<28) | 0x12<<20 | 0xc<<4
case AMULAWB:
return o&(0xf<<28) | 0x12<<20 | 0x8<<4
case AMULABB:
return o&(0xf<<28) | 0x10<<20 | 0x8<<4
case ABL: // BLX REG
return o&(0xf<<28) | 0x12fff3<<4
}
c.ctxt.Diag("%v: bad rrr %d", p, a)
return 0
}
func (c *ctxt5) opbra(p *obj.Prog, a obj.As, sc int) uint32 {
sc &= C_SCOND
sc ^= C_SCOND_XOR
if a == ABL || a == obj.ADUFFZERO || a == obj.ADUFFCOPY {
return uint32(sc)<<28 | 0x5<<25 | 0x1<<24
}
if sc != 0xe {
c.ctxt.Diag("%v: .COND on bcond instruction", p)
}
switch a {
case ABEQ:
return 0x0<<28 | 0x5<<25
case ABNE:
return 0x1<<28 | 0x5<<25
case ABCS:
return 0x2<<28 | 0x5<<25
case ABHS:
return 0x2<<28 | 0x5<<25
case ABCC:
return 0x3<<28 | 0x5<<25
case ABLO:
return 0x3<<28 | 0x5<<25
case ABMI:
return 0x4<<28 | 0x5<<25
case ABPL:
return 0x5<<28 | 0x5<<25
case ABVS:
return 0x6<<28 | 0x5<<25
case ABVC:
return 0x7<<28 | 0x5<<25
case ABHI:
return 0x8<<28 | 0x5<<25
case ABLS:
return 0x9<<28 | 0x5<<25
case ABGE:
return 0xa<<28 | 0x5<<25
case ABLT:
return 0xb<<28 | 0x5<<25
case ABGT:
return 0xc<<28 | 0x5<<25
case ABLE:
return 0xd<<28 | 0x5<<25
case AB:
return 0xe<<28 | 0x5<<25
}
c.ctxt.Diag("%v: bad bra %v", p, a)
return 0
}
func (c *ctxt5) olr(v int32, b int, r int, sc int) uint32 {
o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28
if sc&C_PBIT == 0 {
o |= 1 << 24
}
if sc&C_UBIT == 0 {
o |= 1 << 23
}
if sc&C_WBIT != 0 {
o |= 1 << 21
}
o |= 1<<26 | 1<<20
if v < 0 {
if sc&C_UBIT != 0 {
c.ctxt.Diag(".U on neg offset")
}
v = -v
o ^= 1 << 23
}
if v >= 1<<12 || v < 0 {
c.ctxt.Diag("literal span too large: %d (R%d)\n%v", v, b, c.printp)
}
o |= uint32(v)
o |= (uint32(b) & 15) << 16
o |= (uint32(r) & 15) << 12
return o
}
func (c *ctxt5) olhr(v int32, b int, r int, sc int) uint32 {
o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28
if sc&C_PBIT == 0 {
o |= 1 << 24
}
if sc&C_WBIT != 0 {
o |= 1 << 21
}
o |= 1<<23 | 1<<20 | 0xb<<4
if v < 0 {
v = -v
o ^= 1 << 23
}
if v >= 1<<8 || v < 0 {
c.ctxt.Diag("literal span too large: %d (R%d)\n%v", v, b, c.printp)
}
o |= uint32(v)&0xf | (uint32(v)>>4)<<8 | 1<<22
o |= (uint32(b) & 15) << 16
o |= (uint32(r) & 15) << 12
return o
}
func (c *ctxt5) osr(a obj.As, r int, v int32, b int, sc int) uint32 {
o := c.olr(v, b, r, sc) ^ (1 << 20)
if a != AMOVW {
o |= 1 << 22
}
return o
}
func (c *ctxt5) oshr(r int, v int32, b int, sc int) uint32 {
o := c.olhr(v, b, r, sc) ^ (1 << 20)
return o
}
func (c *ctxt5) osrr(r int, i int, b int, sc int) uint32 {
return c.olr(int32(i), b, r, sc) ^ (1<<25 | 1<<20)
}
func (c *ctxt5) oshrr(r int, i int, b int, sc int) uint32 {
return c.olhr(int32(i), b, r, sc) ^ (1<<22 | 1<<20)
}
func (c *ctxt5) olrr(i int, b int, r int, sc int) uint32 {
return c.olr(int32(i), b, r, sc) ^ (1 << 25)
}
func (c *ctxt5) olhrr(i int, b int, r int, sc int) uint32 {
return c.olhr(int32(i), b, r, sc) ^ (1 << 22)
}
func (c *ctxt5) ofsr(a obj.As, r int, v int32, b int, sc int, p *obj.Prog) uint32 {
o := ((uint32(sc) & C_SCOND) ^ C_SCOND_XOR) << 28
if sc&C_PBIT == 0 {
o |= 1 << 24
}
if sc&C_WBIT != 0 {
o |= 1 << 21
}
o |= 6<<25 | 1<<24 | 1<<23 | 10<<8
if v < 0 {
v = -v
o ^= 1 << 23
}
if v&3 != 0 {
c.ctxt.Diag("odd offset for floating point op: %d\n%v", v, p)
} else if v >= 1<<10 || v < 0 {
c.ctxt.Diag("literal span too large: %d\n%v", v, p)
}
o |= (uint32(v) >> 2) & 0xFF
o |= (uint32(b) & 15) << 16
o |= (uint32(r) & 15) << 12
switch a {
default:
c.ctxt.Diag("bad fst %v", a)
fallthrough
case AMOVD:
o |= 1 << 8
fallthrough
case AMOVF:
break
}
return o
}
// MOVW $"lower 16-bit", Reg
func (c *ctxt5) omvs(p *obj.Prog, a *obj.Addr, dr int) uint32 {
o1 := ((uint32(p.Scond) & C_SCOND) ^ C_SCOND_XOR) << 28
o1 |= 0x30 << 20
o1 |= (uint32(dr) & 15) << 12
o1 |= uint32(a.Offset) & 0x0fff
o1 |= (uint32(a.Offset) & 0xf000) << 4
return o1
}
// MVN $C_NCON, Reg -> MOVW $C_RCON, Reg
func (c *ctxt5) omvr(p *obj.Prog, a *obj.Addr, dr int) uint32 {
o1 := c.oprrr(p, AMOVW, int(p.Scond))
o1 |= (uint32(dr) & 15) << 12
v := immrot(^uint32(a.Offset))
if v == 0 {
c.ctxt.Diag("%v: missing literal", p)
return 0
}
o1 |= uint32(v)
return o1
}
func (c *ctxt5) omvl(p *obj.Prog, a *obj.Addr, dr int) uint32 {
var o1 uint32
if p.Pool == nil {
c.aclass(a)
v := immrot(^uint32(c.instoffset))
if v == 0 {
c.ctxt.Diag("%v: missing literal", p)
return 0
}
o1 = c.oprrr(p, AMVN, int(p.Scond)&C_SCOND)
o1 |= uint32(v)
o1 |= (uint32(dr) & 15) << 12
} else {
v := int32(p.Pool.Pc - p.Pc - 8)
o1 = c.olr(v, REGPC, dr, int(p.Scond)&C_SCOND)
}
return o1
}
func (c *ctxt5) chipzero5(e float64) int {
// We use GOARM=7 to gate the use of VFPv3 vmov (imm) instructions.
if objabi.GOARM < 7 || math.Float64bits(e) != 0 {
return -1
}
return 0
}
func (c *ctxt5) chipfloat5(e float64) int {
// We use GOARM=7 to gate the use of VFPv3 vmov (imm) instructions.
if objabi.GOARM < 7 {
return -1
}
ei := math.Float64bits(e)
l := uint32(ei)
h := uint32(ei >> 32)
if l != 0 || h&0xffff != 0 {
return -1
}
h1 := h & 0x7fc00000
if h1 != 0x40000000 && h1 != 0x3fc00000 {
return -1
}
n := 0
// sign bit (a)
if h&0x80000000 != 0 {
n |= 1 << 7
}
// exp sign bit (b)
if h1 == 0x3fc00000 {
n |= 1 << 6
}
// rest of exp and mantissa (cd-efgh)
n |= int((h >> 16) & 0x3f)
//print("match %.8lux %.8lux %d\n", l, h, n);
return n
}
func nocache(p *obj.Prog) {
p.Optab = 0
p.From.Class = 0
if p.GetFrom3() != nil {
p.GetFrom3().Class = 0
}
p.To.Class = 0
}