// GoToSocial // Copyright (C) GoToSocial Authors admin@gotosocial.org // SPDX-License-Identifier: AGPL-3.0-or-later // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . package media import ( "image" "image/color" "math" ) // NOTE: // the following code is borrowed from // github.com/disintegration/imaging // and collapses in some places for our // particular usecases and with parallel() // function (spans work across goroutines) // removed, instead working synchronously. // // at gotosocial we take particular // care about where we spawn goroutines // to ensure we're in control of the // amount of concurrency in relation // to the amount configured by user. // resizeDownLinear resizes image to given width x height using linear resampling. // This is specifically optimized for resizing down (i.e. smaller), else is noop. func resizeDownLinear(img image.Image, width, height int) image.Image { srcW, srcH := img.Bounds().Dx(), img.Bounds().Dy() if srcW <= 0 || srcH <= 0 || width < 0 || height < 0 { return &image.NRGBA{} } if width == 0 { // If no width is given, use aspect preserving width. tmp := float64(height) * float64(srcW) / float64(srcH) width = int(math.Max(1.0, math.Floor(tmp+0.5))) } if height == 0 { // If no height is given, use aspect preserving height. tmp := float64(width) * float64(srcH) / float64(srcW) height = int(math.Max(1.0, math.Floor(tmp+0.5))) } if width < srcW { // Width is smaller, resize horizontally. img = resizeHorizontalLinear(img, width) } if height < srcH { // Height is smaller, resize vertically. img = resizeVerticalLinear(img, height) } return img } // flipH flips the image horizontally (left to right). func flipH(img image.Image) image.Image { src := newScanner(img) dstW := src.w dstH := src.h rowSize := dstW * 4 dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) for y := 0; y < dstH; y++ { i := y * dst.Stride srcY := y src.scan(0, srcY, src.w, srcY+1, dst.Pix[i:i+rowSize]) reverse(dst.Pix[i : i+rowSize]) } return dst } // flipV flips the image vertically (from top to bottom). func flipV(img image.Image) image.Image { src := newScanner(img) dstW := src.w dstH := src.h rowSize := dstW * 4 dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) for y := 0; y < dstH; y++ { i := y * dst.Stride srcY := dstH - y - 1 src.scan(0, srcY, src.w, srcY+1, dst.Pix[i:i+rowSize]) } return dst } // rotate90 rotates the image 90 counter-clockwise. func rotate90(img image.Image) image.Image { src := newScanner(img) dstW := src.h dstH := src.w rowSize := dstW * 4 dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) for y := 0; y < dstH; y++ { i := y * dst.Stride srcX := dstH - y - 1 src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize]) } return dst } // rotate180 rotates the image 180 counter-clockwise. func rotate180(img image.Image) image.Image { src := newScanner(img) dstW := src.w dstH := src.h rowSize := dstW * 4 dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) for y := 0; y < dstH; y++ { i := y * dst.Stride srcY := dstH - y - 1 src.scan(0, srcY, src.w, srcY+1, dst.Pix[i:i+rowSize]) reverse(dst.Pix[i : i+rowSize]) } return dst } // rotate270 rotates the image 270 counter-clockwise. func rotate270(img image.Image) image.Image { src := newScanner(img) dstW := src.h dstH := src.w rowSize := dstW * 4 dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) for y := 0; y < dstH; y++ { i := y * dst.Stride srcX := y src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize]) reverse(dst.Pix[i : i+rowSize]) } return dst } // transpose flips the image horizontally and rotates 90 counter-clockwise. func transpose(img image.Image) image.Image { src := newScanner(img) dstW := src.h dstH := src.w rowSize := dstW * 4 dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) for y := 0; y < dstH; y++ { i := y * dst.Stride srcX := y src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize]) } return dst } // transverse flips the image vertically and rotates 90 counter-clockwise. func transverse(img image.Image) image.Image { src := newScanner(img) dstW := src.h dstH := src.w rowSize := dstW * 4 dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) for y := 0; y < dstH; y++ { i := y * dst.Stride srcX := dstH - y - 1 src.scan(srcX, 0, srcX+1, src.h, dst.Pix[i:i+rowSize]) reverse(dst.Pix[i : i+rowSize]) } return dst } // resizeHorizontalLinear resizes image to given width using linear resampling. func resizeHorizontalLinear(img image.Image, dstWidth int) image.Image { src := newScanner(img) dst := image.NewRGBA(image.Rect(0, 0, dstWidth, src.h)) weights := precomputeWeightsLinear(dstWidth, src.w) scanLine := make([]uint8, src.w*4) for y := 0; y < src.h; y++ { src.scan(0, y, src.w, y+1, scanLine) j0 := y * dst.Stride for x := range weights { var r, g, b, a float64 for _, w := range weights[x] { i := w.index * 4 s := scanLine[i : i+4 : i+4] aw := float64(s[3]) * w.weight r += float64(s[0]) * aw g += float64(s[1]) * aw b += float64(s[2]) * aw a += aw } if a != 0 { aInv := 1 / a j := j0 + x*4 d := dst.Pix[j : j+4 : j+4] d[0] = clampFloat(r * aInv) d[1] = clampFloat(g * aInv) d[2] = clampFloat(b * aInv) d[3] = clampFloat(a) } } } return dst } // resizeVerticalLinear resizes image to given height using linear resampling. func resizeVerticalLinear(img image.Image, height int) image.Image { src := newScanner(img) dst := image.NewNRGBA(image.Rect(0, 0, src.w, height)) weights := precomputeWeightsLinear(height, src.h) scanLine := make([]uint8, src.h*4) for x := 0; x < src.w; x++ { src.scan(x, 0, x+1, src.h, scanLine) for y := range weights { var r, g, b, a float64 for _, w := range weights[y] { i := w.index * 4 s := scanLine[i : i+4 : i+4] aw := float64(s[3]) * w.weight r += float64(s[0]) * aw g += float64(s[1]) * aw b += float64(s[2]) * aw a += aw } if a != 0 { aInv := 1 / a j := y*dst.Stride + x*4 d := dst.Pix[j : j+4 : j+4] d[0] = clampFloat(r * aInv) d[1] = clampFloat(g * aInv) d[2] = clampFloat(b * aInv) d[3] = clampFloat(a) } } } return dst } type indexWeight struct { index int weight float64 } func precomputeWeightsLinear(dstSize, srcSize int) [][]indexWeight { du := float64(srcSize) / float64(dstSize) scale := du if scale < 1.0 { scale = 1.0 } ru := math.Ceil(scale) out := make([][]indexWeight, dstSize) tmp := make([]indexWeight, 0, dstSize*int(ru+2)*2) for v := 0; v < dstSize; v++ { fu := (float64(v)+0.5)*du - 0.5 begin := int(math.Ceil(fu - ru)) if begin < 0 { begin = 0 } end := int(math.Floor(fu + ru)) if end > srcSize-1 { end = srcSize - 1 } var sum float64 for u := begin; u <= end; u++ { w := resampleLinear((float64(u) - fu) / scale) if w != 0 { sum += w tmp = append(tmp, indexWeight{index: u, weight: w}) } } if sum != 0 { for i := range tmp { tmp[i].weight /= sum } } out[v] = tmp tmp = tmp[len(tmp):] } return out } // resampleLinear is the resample kernel func for linear filtering. func resampleLinear(x float64) float64 { x = math.Abs(x) if x < 1.0 { return 1.0 - x } return 0 } // scanner wraps an image.Image for // easier size access and image type // agnostic access to data at coords. type scanner struct { image image.Image w, h int palette []color.NRGBA } // newScanner wraps an image.Image in scanner{} type. func newScanner(img image.Image) *scanner { b := img.Bounds() s := &scanner{ image: img, w: b.Dx(), h: b.Dy(), } if img, ok := img.(*image.Paletted); ok { s.palette = make([]color.NRGBA, len(img.Palette)) for i := 0; i < len(img.Palette); i++ { s.palette[i] = color.NRGBAModel.Convert(img.Palette[i]).(color.NRGBA) } } return s } // scan scans the given rectangular region of the image into dst. func (s *scanner) scan(x1, y1, x2, y2 int, dst []uint8) { switch img := s.image.(type) { case *image.NRGBA: size := (x2 - x1) * 4 j := 0 i := y1*img.Stride + x1*4 if size == 4 { for y := y1; y < y2; y++ { d := dst[j : j+4 : j+4] s := img.Pix[i : i+4 : i+4] d[0] = s[0] d[1] = s[1] d[2] = s[2] d[3] = s[3] j += size i += img.Stride } } else { for y := y1; y < y2; y++ { copy(dst[j:j+size], img.Pix[i:i+size]) j += size i += img.Stride } } case *image.NRGBA64: j := 0 for y := y1; y < y2; y++ { i := y*img.Stride + x1*8 for x := x1; x < x2; x++ { s := img.Pix[i : i+8 : i+8] d := dst[j : j+4 : j+4] d[0] = s[0] d[1] = s[2] d[2] = s[4] d[3] = s[6] j += 4 i += 8 } } case *image.RGBA: j := 0 for y := y1; y < y2; y++ { i := y*img.Stride + x1*4 for x := x1; x < x2; x++ { d := dst[j : j+4 : j+4] a := img.Pix[i+3] switch a { case 0: d[0] = 0 d[1] = 0 d[2] = 0 d[3] = a case 0xff: s := img.Pix[i : i+4 : i+4] d[0] = s[0] d[1] = s[1] d[2] = s[2] d[3] = a default: s := img.Pix[i : i+4 : i+4] r16 := uint16(s[0]) g16 := uint16(s[1]) b16 := uint16(s[2]) a16 := uint16(a) d[0] = uint8(r16 * 0xff / a16) // #nosec G115 -- Overflow desired. d[1] = uint8(g16 * 0xff / a16) // #nosec G115 -- Overflow desired. d[2] = uint8(b16 * 0xff / a16) // #nosec G115 -- Overflow desired. d[3] = a } j += 4 i += 4 } } case *image.RGBA64: j := 0 for y := y1; y < y2; y++ { i := y*img.Stride + x1*8 for x := x1; x < x2; x++ { s := img.Pix[i : i+8 : i+8] d := dst[j : j+4 : j+4] a := s[6] switch a { case 0: d[0] = 0 d[1] = 0 d[2] = 0 case 0xff: d[0] = s[0] d[1] = s[2] d[2] = s[4] default: r32 := uint32(s[0])<<8 | uint32(s[1]) g32 := uint32(s[2])<<8 | uint32(s[3]) b32 := uint32(s[4])<<8 | uint32(s[5]) a32 := uint32(s[6])<<8 | uint32(s[7]) d[0] = uint8((r32 * 0xffff / a32) >> 8) // #nosec G115 -- Overflow desired. d[1] = uint8((g32 * 0xffff / a32) >> 8) // #nosec G115 -- Overflow desired. d[2] = uint8((b32 * 0xffff / a32) >> 8) // #nosec G115 -- Overflow desired. } d[3] = a j += 4 i += 8 } } case *image.Gray: j := 0 for y := y1; y < y2; y++ { i := y*img.Stride + x1 for x := x1; x < x2; x++ { c := img.Pix[i] d := dst[j : j+4 : j+4] d[0] = c d[1] = c d[2] = c d[3] = 0xff j += 4 i++ } } case *image.Gray16: j := 0 for y := y1; y < y2; y++ { i := y*img.Stride + x1*2 for x := x1; x < x2; x++ { c := img.Pix[i] d := dst[j : j+4 : j+4] d[0] = c d[1] = c d[2] = c d[3] = 0xff j += 4 i += 2 } } case *image.YCbCr: j := 0 x1 += img.Rect.Min.X x2 += img.Rect.Min.X y1 += img.Rect.Min.Y y2 += img.Rect.Min.Y hy := img.Rect.Min.Y / 2 hx := img.Rect.Min.X / 2 for y := y1; y < y2; y++ { iy := (y-img.Rect.Min.Y)*img.YStride + (x1 - img.Rect.Min.X) var yBase int switch img.SubsampleRatio { case image.YCbCrSubsampleRatio444, image.YCbCrSubsampleRatio422: yBase = (y - img.Rect.Min.Y) * img.CStride case image.YCbCrSubsampleRatio420, image.YCbCrSubsampleRatio440: yBase = (y/2 - hy) * img.CStride } for x := x1; x < x2; x++ { var ic int switch img.SubsampleRatio { case image.YCbCrSubsampleRatio444, image.YCbCrSubsampleRatio440: ic = yBase + (x - img.Rect.Min.X) case image.YCbCrSubsampleRatio422, image.YCbCrSubsampleRatio420: ic = yBase + (x/2 - hx) default: ic = img.COffset(x, y) } yy1 := int32(img.Y[iy]) * 0x10101 cb1 := int32(img.Cb[ic]) - 128 cr1 := int32(img.Cr[ic]) - 128 r := yy1 + 91881*cr1 if uint32(r)&0xff000000 == 0 { //nolint:gosec r >>= 16 } else { r = ^(r >> 31) } g := yy1 - 22554*cb1 - 46802*cr1 if uint32(g)&0xff000000 == 0 { //nolint:gosec g >>= 16 } else { g = ^(g >> 31) } b := yy1 + 116130*cb1 if uint32(b)&0xff000000 == 0 { //nolint:gosec b >>= 16 } else { b = ^(b >> 31) } d := dst[j : j+4 : j+4] d[0] = uint8(r) // #nosec G115 -- Overflow desired. d[1] = uint8(g) // #nosec G115 -- Overflow desired. d[2] = uint8(b) // #nosec G115 -- Overflow desired. d[3] = 0xff iy++ j += 4 } } case *image.Paletted: j := 0 for y := y1; y < y2; y++ { i := y*img.Stride + x1 for x := x1; x < x2; x++ { c := s.palette[img.Pix[i]] d := dst[j : j+4 : j+4] d[0] = c.R d[1] = c.G d[2] = c.B d[3] = c.A j += 4 i++ } } default: j := 0 b := s.image.Bounds() x1 += b.Min.X x2 += b.Min.X y1 += b.Min.Y y2 += b.Min.Y for y := y1; y < y2; y++ { for x := x1; x < x2; x++ { r16, g16, b16, a16 := s.image.At(x, y).RGBA() d := dst[j : j+4 : j+4] switch a16 { case 0xffff: d[0] = uint8(r16 >> 8) // #nosec G115 -- Overflow desired. d[1] = uint8(g16 >> 8) // #nosec G115 -- Overflow desired. d[2] = uint8(b16 >> 8) // #nosec G115 -- Overflow desired. d[3] = 0xff case 0: d[0] = 0 d[1] = 0 d[2] = 0 d[3] = 0 default: d[0] = uint8(((r16 * 0xffff) / a16) >> 8) // #nosec G115 -- Overflow desired. d[1] = uint8(((g16 * 0xffff) / a16) >> 8) // #nosec G115 -- Overflow desired. d[2] = uint8(((b16 * 0xffff) / a16) >> 8) // #nosec G115 -- Overflow desired. d[3] = uint8(a16 >> 8) // #nosec G115 -- Overflow desired. } j += 4 } } } } // reverse reverses the data // in contained pixel slice. func reverse(pix []uint8) { if len(pix) <= 4 { return } i := 0 j := len(pix) - 4 for i < j { pi := pix[i : i+4 : i+4] pj := pix[j : j+4 : j+4] pi[0], pj[0] = pj[0], pi[0] pi[1], pj[1] = pj[1], pi[1] pi[2], pj[2] = pj[2], pi[2] pi[3], pj[3] = pj[3], pi[3] i += 4 j -= 4 } } // clampFloat rounds and clamps float64 value to fit into uint8. func clampFloat(x float64) uint8 { v := int64(x + 0.5) if v > 255 { return 255 } if v > 0 { return uint8(v) // #nosec G115 -- Just checked. } return 0 }