// Copyright 2014 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package r1 import ( "fmt" "math" ) // Interval represents a closed interval on ℝ. // Zero-length intervals (where Lo == Hi) represent single points. // If Lo > Hi then the interval is empty. type Interval struct { Lo, Hi float64 } // EmptyInterval returns an empty interval. func EmptyInterval() Interval { return Interval{1, 0} } // IntervalFromPoint returns an interval representing a single point. func IntervalFromPoint(p float64) Interval { return Interval{p, p} } // IsEmpty reports whether the interval is empty. func (i Interval) IsEmpty() bool { return i.Lo > i.Hi } // Equal returns true iff the interval contains the same points as oi. func (i Interval) Equal(oi Interval) bool { return i == oi || i.IsEmpty() && oi.IsEmpty() } // Center returns the midpoint of the interval. // It is undefined for empty intervals. func (i Interval) Center() float64 { return 0.5 * (i.Lo + i.Hi) } // Length returns the length of the interval. // The length of an empty interval is negative. func (i Interval) Length() float64 { return i.Hi - i.Lo } // Contains returns true iff the interval contains p. func (i Interval) Contains(p float64) bool { return i.Lo <= p && p <= i.Hi } // ContainsInterval returns true iff the interval contains oi. func (i Interval) ContainsInterval(oi Interval) bool { if oi.IsEmpty() { return true } return i.Lo <= oi.Lo && oi.Hi <= i.Hi } // InteriorContains returns true iff the interval strictly contains p. func (i Interval) InteriorContains(p float64) bool { return i.Lo < p && p < i.Hi } // InteriorContainsInterval returns true iff the interval strictly contains oi. func (i Interval) InteriorContainsInterval(oi Interval) bool { if oi.IsEmpty() { return true } return i.Lo < oi.Lo && oi.Hi < i.Hi } // Intersects returns true iff the interval contains any points in common with oi. func (i Interval) Intersects(oi Interval) bool { if i.Lo <= oi.Lo { return oi.Lo <= i.Hi && oi.Lo <= oi.Hi // oi.Lo ∈ i and oi is not empty } return i.Lo <= oi.Hi && i.Lo <= i.Hi // i.Lo ∈ oi and i is not empty } // InteriorIntersects returns true iff the interior of the interval contains any points in common with oi, including the latter's boundary. func (i Interval) InteriorIntersects(oi Interval) bool { return oi.Lo < i.Hi && i.Lo < oi.Hi && i.Lo < i.Hi && oi.Lo <= oi.Hi } // Intersection returns the interval containing all points common to i and j. func (i Interval) Intersection(j Interval) Interval { // Empty intervals do not need to be special-cased. return Interval{ Lo: math.Max(i.Lo, j.Lo), Hi: math.Min(i.Hi, j.Hi), } } // AddPoint returns the interval expanded so that it contains the given point. func (i Interval) AddPoint(p float64) Interval { if i.IsEmpty() { return Interval{p, p} } if p < i.Lo { return Interval{p, i.Hi} } if p > i.Hi { return Interval{i.Lo, p} } return i } // ClampPoint returns the closest point in the interval to the given point "p". // The interval must be non-empty. func (i Interval) ClampPoint(p float64) float64 { return math.Max(i.Lo, math.Min(i.Hi, p)) } // Expanded returns an interval that has been expanded on each side by margin. // If margin is negative, then the function shrinks the interval on // each side by margin instead. The resulting interval may be empty. Any // expansion of an empty interval remains empty. func (i Interval) Expanded(margin float64) Interval { if i.IsEmpty() { return i } return Interval{i.Lo - margin, i.Hi + margin} } // Union returns the smallest interval that contains this interval and the given interval. func (i Interval) Union(other Interval) Interval { if i.IsEmpty() { return other } if other.IsEmpty() { return i } return Interval{math.Min(i.Lo, other.Lo), math.Max(i.Hi, other.Hi)} } func (i Interval) String() string { return fmt.Sprintf("[%.7f, %.7f]", i.Lo, i.Hi) } const ( // epsilon is a small number that represents a reasonable level of noise between two // values that can be considered to be equal. epsilon = 1e-15 // dblEpsilon is a smaller number for values that require more precision. // This is the C++ DBL_EPSILON equivalent. dblEpsilon = 2.220446049250313e-16 ) // ApproxEqual reports whether the interval can be transformed into the // given interval by moving each endpoint a small distance. // The empty interval is considered to be positioned arbitrarily on the // real line, so any interval with a small enough length will match // the empty interval. func (i Interval) ApproxEqual(other Interval) bool { if i.IsEmpty() { return other.Length() <= 2*epsilon } if other.IsEmpty() { return i.Length() <= 2*epsilon } return math.Abs(other.Lo-i.Lo) <= epsilon && math.Abs(other.Hi-i.Hi) <= epsilon } // DirectedHausdorffDistance returns the Hausdorff distance to the given interval. For two // intervals x and y, this distance is defined as // h(x, y) = max_{p in x} min_{q in y} d(p, q). func (i Interval) DirectedHausdorffDistance(other Interval) float64 { if i.IsEmpty() { return 0 } if other.IsEmpty() { return math.Inf(1) } return math.Max(0, math.Max(i.Hi-other.Hi, other.Lo-i.Lo)) }