// Copyright 2014 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package s2 import ( "io" "math" "github.com/golang/geo/r1" "github.com/golang/geo/r2" "github.com/golang/geo/r3" "github.com/golang/geo/s1" ) // Cell is an S2 region object that represents a cell. Unlike CellIDs, // it supports efficient containment and intersection tests. However, it is // also a more expensive representation. type Cell struct { face int8 level int8 orientation int8 id CellID uv r2.Rect } // CellFromCellID constructs a Cell corresponding to the given CellID. func CellFromCellID(id CellID) Cell { c := Cell{} c.id = id f, i, j, o := c.id.faceIJOrientation() c.face = int8(f) c.level = int8(c.id.Level()) c.orientation = int8(o) c.uv = ijLevelToBoundUV(i, j, int(c.level)) return c } // CellFromPoint constructs a cell for the given Point. func CellFromPoint(p Point) Cell { return CellFromCellID(cellIDFromPoint(p)) } // CellFromLatLng constructs a cell for the given LatLng. func CellFromLatLng(ll LatLng) Cell { return CellFromCellID(CellIDFromLatLng(ll)) } // Face returns the face this cell is on. func (c Cell) Face() int { return int(c.face) } // oppositeFace returns the face opposite the given face. func oppositeFace(face int) int { return (face + 3) % 6 } // Level returns the level of this cell. func (c Cell) Level() int { return int(c.level) } // ID returns the CellID this cell represents. func (c Cell) ID() CellID { return c.id } // IsLeaf returns whether this Cell is a leaf or not. func (c Cell) IsLeaf() bool { return c.level == maxLevel } // SizeIJ returns the edge length of this cell in (i,j)-space. func (c Cell) SizeIJ() int { return sizeIJ(int(c.level)) } // SizeST returns the edge length of this cell in (s,t)-space. func (c Cell) SizeST() float64 { return c.id.sizeST(int(c.level)) } // Vertex returns the k-th vertex of the cell (k = 0,1,2,3) in CCW order // (lower left, lower right, upper right, upper left in the UV plane). func (c Cell) Vertex(k int) Point { return Point{faceUVToXYZ(int(c.face), c.uv.Vertices()[k].X, c.uv.Vertices()[k].Y).Normalize()} } // Edge returns the inward-facing normal of the great circle passing through // the CCW ordered edge from vertex k to vertex k+1 (mod 4) (for k = 0,1,2,3). func (c Cell) Edge(k int) Point { switch k { case 0: return Point{vNorm(int(c.face), c.uv.Y.Lo).Normalize()} // Bottom case 1: return Point{uNorm(int(c.face), c.uv.X.Hi).Normalize()} // Right case 2: return Point{vNorm(int(c.face), c.uv.Y.Hi).Mul(-1.0).Normalize()} // Top default: return Point{uNorm(int(c.face), c.uv.X.Lo).Mul(-1.0).Normalize()} // Left } } // BoundUV returns the bounds of this cell in (u,v)-space. func (c Cell) BoundUV() r2.Rect { return c.uv } // Center returns the direction vector corresponding to the center in // (s,t)-space of the given cell. This is the point at which the cell is // divided into four subcells; it is not necessarily the centroid of the // cell in (u,v)-space or (x,y,z)-space func (c Cell) Center() Point { return Point{c.id.rawPoint().Normalize()} } // Children returns the four direct children of this cell in traversal order // and returns true. If this is a leaf cell, or the children could not be created, // false is returned. // The C++ method is called Subdivide. func (c Cell) Children() ([4]Cell, bool) { var children [4]Cell if c.id.IsLeaf() { return children, false } // Compute the cell midpoint in uv-space. uvMid := c.id.centerUV() // Create four children with the appropriate bounds. cid := c.id.ChildBegin() for pos := 0; pos < 4; pos++ { children[pos] = Cell{ face: c.face, level: c.level + 1, orientation: c.orientation ^ int8(posToOrientation[pos]), id: cid, } // We want to split the cell in half in u and v. To decide which // side to set equal to the midpoint value, we look at cell's (i,j) // position within its parent. The index for i is in bit 1 of ij. ij := posToIJ[c.orientation][pos] i := ij >> 1 j := ij & 1 if i == 1 { children[pos].uv.X.Hi = c.uv.X.Hi children[pos].uv.X.Lo = uvMid.X } else { children[pos].uv.X.Lo = c.uv.X.Lo children[pos].uv.X.Hi = uvMid.X } if j == 1 { children[pos].uv.Y.Hi = c.uv.Y.Hi children[pos].uv.Y.Lo = uvMid.Y } else { children[pos].uv.Y.Lo = c.uv.Y.Lo children[pos].uv.Y.Hi = uvMid.Y } cid = cid.Next() } return children, true } // ExactArea returns the area of this cell as accurately as possible. func (c Cell) ExactArea() float64 { v0, v1, v2, v3 := c.Vertex(0), c.Vertex(1), c.Vertex(2), c.Vertex(3) return PointArea(v0, v1, v2) + PointArea(v0, v2, v3) } // ApproxArea returns the approximate area of this cell. This method is accurate // to within 3% percent for all cell sizes and accurate to within 0.1% for cells // at level 5 or higher (i.e. squares 350km to a side or smaller on the Earth's // surface). It is moderately cheap to compute. func (c Cell) ApproxArea() float64 { // All cells at the first two levels have the same area. if c.level < 2 { return c.AverageArea() } // First, compute the approximate area of the cell when projected // perpendicular to its normal. The cross product of its diagonals gives // the normal, and the length of the normal is twice the projected area. flatArea := 0.5 * (c.Vertex(2).Sub(c.Vertex(0).Vector). Cross(c.Vertex(3).Sub(c.Vertex(1).Vector)).Norm()) // Now, compensate for the curvature of the cell surface by pretending // that the cell is shaped like a spherical cap. The ratio of the // area of a spherical cap to the area of its projected disc turns out // to be 2 / (1 + sqrt(1 - r*r)) where r is the radius of the disc. // For example, when r=0 the ratio is 1, and when r=1 the ratio is 2. // Here we set Pi*r*r == flatArea to find the equivalent disc. return flatArea * 2 / (1 + math.Sqrt(1-math.Min(1/math.Pi*flatArea, 1))) } // AverageArea returns the average area of cells at the level of this cell. // This is accurate to within a factor of 1.7. func (c Cell) AverageArea() float64 { return AvgAreaMetric.Value(int(c.level)) } // IntersectsCell reports whether the intersection of this cell and the other cell is not nil. func (c Cell) IntersectsCell(oc Cell) bool { return c.id.Intersects(oc.id) } // ContainsCell reports whether this cell contains the other cell. func (c Cell) ContainsCell(oc Cell) bool { return c.id.Contains(oc.id) } // CellUnionBound computes a covering of the Cell. func (c Cell) CellUnionBound() []CellID { return c.CapBound().CellUnionBound() } // latitude returns the latitude of the cell vertex in radians given by (i,j), // where i and j indicate the Hi (1) or Lo (0) corner. func (c Cell) latitude(i, j int) float64 { var u, v float64 switch { case i == 0 && j == 0: u = c.uv.X.Lo v = c.uv.Y.Lo case i == 0 && j == 1: u = c.uv.X.Lo v = c.uv.Y.Hi case i == 1 && j == 0: u = c.uv.X.Hi v = c.uv.Y.Lo case i == 1 && j == 1: u = c.uv.X.Hi v = c.uv.Y.Hi default: panic("i and/or j is out of bounds") } return latitude(Point{faceUVToXYZ(int(c.face), u, v)}).Radians() } // longitude returns the longitude of the cell vertex in radians given by (i,j), // where i and j indicate the Hi (1) or Lo (0) corner. func (c Cell) longitude(i, j int) float64 { var u, v float64 switch { case i == 0 && j == 0: u = c.uv.X.Lo v = c.uv.Y.Lo case i == 0 && j == 1: u = c.uv.X.Lo v = c.uv.Y.Hi case i == 1 && j == 0: u = c.uv.X.Hi v = c.uv.Y.Lo case i == 1 && j == 1: u = c.uv.X.Hi v = c.uv.Y.Hi default: panic("i and/or j is out of bounds") } return longitude(Point{faceUVToXYZ(int(c.face), u, v)}).Radians() } var ( poleMinLat = math.Asin(math.Sqrt(1.0/3)) - 0.5*dblEpsilon ) // RectBound returns the bounding rectangle of this cell. func (c Cell) RectBound() Rect { if c.level > 0 { // Except for cells at level 0, the latitude and longitude extremes are // attained at the vertices. Furthermore, the latitude range is // determined by one pair of diagonally opposite vertices and the // longitude range is determined by the other pair. // // We first determine which corner (i,j) of the cell has the largest // absolute latitude. To maximize latitude, we want to find the point in // the cell that has the largest absolute z-coordinate and the smallest // absolute x- and y-coordinates. To do this we look at each coordinate // (u and v), and determine whether we want to minimize or maximize that // coordinate based on the axis direction and the cell's (u,v) quadrant. u := c.uv.X.Lo + c.uv.X.Hi v := c.uv.Y.Lo + c.uv.Y.Hi var i, j int if uAxis(int(c.face)).Z == 0 { if u < 0 { i = 1 } } else if u > 0 { i = 1 } if vAxis(int(c.face)).Z == 0 { if v < 0 { j = 1 } } else if v > 0 { j = 1 } lat := r1.IntervalFromPoint(c.latitude(i, j)).AddPoint(c.latitude(1-i, 1-j)) lng := s1.EmptyInterval().AddPoint(c.longitude(i, 1-j)).AddPoint(c.longitude(1-i, j)) // We grow the bounds slightly to make sure that the bounding rectangle // contains LatLngFromPoint(P) for any point P inside the loop L defined by the // four *normalized* vertices. Note that normalization of a vector can // change its direction by up to 0.5 * dblEpsilon radians, and it is not // enough just to add Normalize calls to the code above because the // latitude/longitude ranges are not necessarily determined by diagonally // opposite vertex pairs after normalization. // // We would like to bound the amount by which the latitude/longitude of a // contained point P can exceed the bounds computed above. In the case of // longitude, the normalization error can change the direction of rounding // leading to a maximum difference in longitude of 2 * dblEpsilon. In // the case of latitude, the normalization error can shift the latitude by // up to 0.5 * dblEpsilon and the other sources of error can cause the // two latitudes to differ by up to another 1.5 * dblEpsilon, which also // leads to a maximum difference of 2 * dblEpsilon. return Rect{lat, lng}.expanded(LatLng{s1.Angle(2 * dblEpsilon), s1.Angle(2 * dblEpsilon)}).PolarClosure() } // The 4 cells around the equator extend to +/-45 degrees latitude at the // midpoints of their top and bottom edges. The two cells covering the // poles extend down to +/-35.26 degrees at their vertices. The maximum // error in this calculation is 0.5 * dblEpsilon. var bound Rect switch c.face { case 0: bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{-math.Pi / 4, math.Pi / 4}} case 1: bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{math.Pi / 4, 3 * math.Pi / 4}} case 2: bound = Rect{r1.Interval{poleMinLat, math.Pi / 2}, s1.FullInterval()} case 3: bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{3 * math.Pi / 4, -3 * math.Pi / 4}} case 4: bound = Rect{r1.Interval{-math.Pi / 4, math.Pi / 4}, s1.Interval{-3 * math.Pi / 4, -math.Pi / 4}} default: bound = Rect{r1.Interval{-math.Pi / 2, -poleMinLat}, s1.FullInterval()} } // Finally, we expand the bound to account for the error when a point P is // converted to an LatLng to test for containment. (The bound should be // large enough so that it contains the computed LatLng of any contained // point, not just the infinite-precision version.) We don't need to expand // longitude because longitude is calculated via a single call to math.Atan2, // which is guaranteed to be semi-monotonic. return bound.expanded(LatLng{s1.Angle(dblEpsilon), s1.Angle(0)}) } // CapBound returns the bounding cap of this cell. func (c Cell) CapBound() Cap { // We use the cell center in (u,v)-space as the cap axis. This vector is very close // to GetCenter() and faster to compute. Neither one of these vectors yields the // bounding cap with minimal surface area, but they are both pretty close. cap := CapFromPoint(Point{faceUVToXYZ(int(c.face), c.uv.Center().X, c.uv.Center().Y).Normalize()}) for k := 0; k < 4; k++ { cap = cap.AddPoint(c.Vertex(k)) } return cap } // ContainsPoint reports whether this cell contains the given point. Note that // unlike Loop/Polygon, a Cell is considered to be a closed set. This means // that a point on a Cell's edge or vertex belong to the Cell and the relevant // adjacent Cells too. // // If you want every point to be contained by exactly one Cell, // you will need to convert the Cell to a Loop. func (c Cell) ContainsPoint(p Point) bool { var uv r2.Point var ok bool if uv.X, uv.Y, ok = faceXYZToUV(int(c.face), p); !ok { return false } // Expand the (u,v) bound to ensure that // // CellFromPoint(p).ContainsPoint(p) // // is always true. To do this, we need to account for the error when // converting from (u,v) coordinates to (s,t) coordinates. In the // normal case the total error is at most dblEpsilon. return c.uv.ExpandedByMargin(dblEpsilon).ContainsPoint(uv) } // Encode encodes the Cell. func (c Cell) Encode(w io.Writer) error { e := &encoder{w: w} c.encode(e) return e.err } func (c Cell) encode(e *encoder) { c.id.encode(e) } // Decode decodes the Cell. func (c *Cell) Decode(r io.Reader) error { d := &decoder{r: asByteReader(r)} c.decode(d) return d.err } func (c *Cell) decode(d *decoder) { c.id.decode(d) *c = CellFromCellID(c.id) } // vertexChordDist2 returns the squared chord distance from point P to the // given corner vertex specified by the Hi or Lo values of each. func (c Cell) vertexChordDist2(p Point, xHi, yHi bool) s1.ChordAngle { x := c.uv.X.Lo y := c.uv.Y.Lo if xHi { x = c.uv.X.Hi } if yHi { y = c.uv.Y.Hi } return ChordAngleBetweenPoints(p, PointFromCoords(x, y, 1)) } // uEdgeIsClosest reports whether a point P is closer to the interior of the specified // Cell edge (either the lower or upper edge of the Cell) or to the endpoints. func (c Cell) uEdgeIsClosest(p Point, vHi bool) bool { u0 := c.uv.X.Lo u1 := c.uv.X.Hi v := c.uv.Y.Lo if vHi { v = c.uv.Y.Hi } // These are the normals to the planes that are perpendicular to the edge // and pass through one of its two endpoints. dir0 := r3.Vector{v*v + 1, -u0 * v, -u0} dir1 := r3.Vector{v*v + 1, -u1 * v, -u1} return p.Dot(dir0) > 0 && p.Dot(dir1) < 0 } // vEdgeIsClosest reports whether a point P is closer to the interior of the specified // Cell edge (either the right or left edge of the Cell) or to the endpoints. func (c Cell) vEdgeIsClosest(p Point, uHi bool) bool { v0 := c.uv.Y.Lo v1 := c.uv.Y.Hi u := c.uv.X.Lo if uHi { u = c.uv.X.Hi } dir0 := r3.Vector{-u * v0, u*u + 1, -v0} dir1 := r3.Vector{-u * v1, u*u + 1, -v1} return p.Dot(dir0) > 0 && p.Dot(dir1) < 0 } // edgeDistance reports the distance from a Point P to a given Cell edge. The point // P is given by its dot product, and the uv edge by its normal in the // given coordinate value. func edgeDistance(ij, uv float64) s1.ChordAngle { // Let P by the target point and let R be the closest point on the given // edge AB. The desired distance PR can be expressed as PR^2 = PQ^2 + QR^2 // where Q is the point P projected onto the plane through the great circle // through AB. We can compute the distance PQ^2 perpendicular to the plane // from "dirIJ" (the dot product of the target point P with the edge // normal) and the squared length the edge normal (1 + uv**2). pq2 := (ij * ij) / (1 + uv*uv) // We can compute the distance QR as (1 - OQ) where O is the sphere origin, // and we can compute OQ^2 = 1 - PQ^2 using the Pythagorean theorem. // (This calculation loses accuracy as angle POQ approaches Pi/2.) qr := 1 - math.Sqrt(1-pq2) return s1.ChordAngleFromSquaredLength(pq2 + qr*qr) } // distanceInternal reports the distance from the given point to the interior of // the cell if toInterior is true or to the boundary of the cell otherwise. func (c Cell) distanceInternal(targetXYZ Point, toInterior bool) s1.ChordAngle { // All calculations are done in the (u,v,w) coordinates of this cell's face. target := faceXYZtoUVW(int(c.face), targetXYZ) // Compute dot products with all four upward or rightward-facing edge // normals. dirIJ is the dot product for the edge corresponding to axis // I, endpoint J. For example, dir01 is the right edge of the Cell // (corresponding to the upper endpoint of the u-axis). dir00 := target.X - target.Z*c.uv.X.Lo dir01 := target.X - target.Z*c.uv.X.Hi dir10 := target.Y - target.Z*c.uv.Y.Lo dir11 := target.Y - target.Z*c.uv.Y.Hi inside := true if dir00 < 0 { inside = false // Target is to the left of the cell if c.vEdgeIsClosest(target, false) { return edgeDistance(-dir00, c.uv.X.Lo) } } if dir01 > 0 { inside = false // Target is to the right of the cell if c.vEdgeIsClosest(target, true) { return edgeDistance(dir01, c.uv.X.Hi) } } if dir10 < 0 { inside = false // Target is below the cell if c.uEdgeIsClosest(target, false) { return edgeDistance(-dir10, c.uv.Y.Lo) } } if dir11 > 0 { inside = false // Target is above the cell if c.uEdgeIsClosest(target, true) { return edgeDistance(dir11, c.uv.Y.Hi) } } if inside { if toInterior { return s1.ChordAngle(0) } // Although you might think of Cells as rectangles, they are actually // arbitrary quadrilaterals after they are projected onto the sphere. // Therefore the simplest approach is just to find the minimum distance to // any of the four edges. return minChordAngle(edgeDistance(-dir00, c.uv.X.Lo), edgeDistance(dir01, c.uv.X.Hi), edgeDistance(-dir10, c.uv.Y.Lo), edgeDistance(dir11, c.uv.Y.Hi)) } // Otherwise, the closest point is one of the four cell vertices. Note that // it is *not* trivial to narrow down the candidates based on the edge sign // tests above, because (1) the edges don't meet at right angles and (2) // there are points on the far side of the sphere that are both above *and* // below the cell, etc. return minChordAngle(c.vertexChordDist2(target, false, false), c.vertexChordDist2(target, true, false), c.vertexChordDist2(target, false, true), c.vertexChordDist2(target, true, true)) } // Distance reports the distance from the cell to the given point. Returns zero if // the point is inside the cell. func (c Cell) Distance(target Point) s1.ChordAngle { return c.distanceInternal(target, true) } // MaxDistance reports the maximum distance from the cell (including its interior) to the // given point. func (c Cell) MaxDistance(target Point) s1.ChordAngle { // First check the 4 cell vertices. If all are within the hemisphere // centered around target, the max distance will be to one of these vertices. targetUVW := faceXYZtoUVW(int(c.face), target) maxDist := maxChordAngle(c.vertexChordDist2(targetUVW, false, false), c.vertexChordDist2(targetUVW, true, false), c.vertexChordDist2(targetUVW, false, true), c.vertexChordDist2(targetUVW, true, true)) if maxDist <= s1.RightChordAngle { return maxDist } // Otherwise, find the minimum distance dMin to the antipodal point and the // maximum distance will be pi - dMin. return s1.StraightChordAngle - c.BoundaryDistance(Point{target.Mul(-1)}) } // BoundaryDistance reports the distance from the cell boundary to the given point. func (c Cell) BoundaryDistance(target Point) s1.ChordAngle { return c.distanceInternal(target, false) } // DistanceToEdge returns the minimum distance from the cell to the given edge AB. Returns // zero if the edge intersects the cell interior. func (c Cell) DistanceToEdge(a, b Point) s1.ChordAngle { // Possible optimizations: // - Currently the (cell vertex, edge endpoint) distances are computed // twice each, and the length of AB is computed 4 times. // - To fix this, refactor GetDistance(target) so that it skips calculating // the distance to each cell vertex. Instead, compute the cell vertices // and distances in this function, and add a low-level UpdateMinDistance // that allows the XA, XB, and AB distances to be passed in. // - It might also be more efficient to do all calculations in UVW-space, // since this would involve transforming 2 points rather than 4. // First, check the minimum distance to the edge endpoints A and B. // (This also detects whether either endpoint is inside the cell.) minDist := minChordAngle(c.Distance(a), c.Distance(b)) if minDist == 0 { return minDist } // Otherwise, check whether the edge crosses the cell boundary. crosser := NewChainEdgeCrosser(a, b, c.Vertex(3)) for i := 0; i < 4; i++ { if crosser.ChainCrossingSign(c.Vertex(i)) != DoNotCross { return 0 } } // Finally, check whether the minimum distance occurs between a cell vertex // and the interior of the edge AB. (Some of this work is redundant, since // it also checks the distance to the endpoints A and B again.) // // Note that we don't need to check the distance from the interior of AB to // the interior of a cell edge, because the only way that this distance can // be minimal is if the two edges cross (already checked above). for i := 0; i < 4; i++ { minDist, _ = UpdateMinDistance(c.Vertex(i), a, b, minDist) } return minDist } // MaxDistanceToEdge returns the maximum distance from the cell (including its interior) // to the given edge AB. func (c Cell) MaxDistanceToEdge(a, b Point) s1.ChordAngle { // If the maximum distance from both endpoints to the cell is less than π/2 // then the maximum distance from the edge to the cell is the maximum of the // two endpoint distances. maxDist := maxChordAngle(c.MaxDistance(a), c.MaxDistance(b)) if maxDist <= s1.RightChordAngle { return maxDist } return s1.StraightChordAngle - c.DistanceToEdge(Point{a.Mul(-1)}, Point{b.Mul(-1)}) } // DistanceToCell returns the minimum distance from this cell to the given cell. // It returns zero if one cell contains the other. func (c Cell) DistanceToCell(target Cell) s1.ChordAngle { // If the cells intersect, the distance is zero. We use the (u,v) ranges // rather than CellID intersects so that cells that share a partial edge or // corner are considered to intersect. if c.face == target.face && c.uv.Intersects(target.uv) { return 0 } // Otherwise, the minimum distance always occurs between a vertex of one // cell and an edge of the other cell (including the edge endpoints). This // represents a total of 32 possible (vertex, edge) pairs. // // TODO(roberts): This could be optimized to be at least 5x faster by pruning // the set of possible closest vertex/edge pairs using the faces and (u,v) // ranges of both cells. var va, vb [4]Point for i := 0; i < 4; i++ { va[i] = c.Vertex(i) vb[i] = target.Vertex(i) } minDist := s1.InfChordAngle() for i := 0; i < 4; i++ { for j := 0; j < 4; j++ { minDist, _ = UpdateMinDistance(va[i], vb[j], vb[(j+1)&3], minDist) minDist, _ = UpdateMinDistance(vb[i], va[j], va[(j+1)&3], minDist) } } return minDist } // MaxDistanceToCell returns the maximum distance from the cell (including its // interior) to the given target cell. func (c Cell) MaxDistanceToCell(target Cell) s1.ChordAngle { // Need to check the antipodal target for intersection with the cell. If it // intersects, the distance is the straight ChordAngle. // antipodalUV is the transpose of the original UV, interpreted within the opposite face. antipodalUV := r2.Rect{target.uv.Y, target.uv.X} if int(c.face) == oppositeFace(int(target.face)) && c.uv.Intersects(antipodalUV) { return s1.StraightChordAngle } // Otherwise, the maximum distance always occurs between a vertex of one // cell and an edge of the other cell (including the edge endpoints). This // represents a total of 32 possible (vertex, edge) pairs. // // TODO(roberts): When the maximum distance is at most π/2, the maximum is // always attained between a pair of vertices, and this could be made much // faster by testing each vertex pair once rather than the current 4 times. var va, vb [4]Point for i := 0; i < 4; i++ { va[i] = c.Vertex(i) vb[i] = target.Vertex(i) } maxDist := s1.NegativeChordAngle for i := 0; i < 4; i++ { for j := 0; j < 4; j++ { maxDist, _ = UpdateMaxDistance(va[i], vb[j], vb[(j+1)&3], maxDist) maxDist, _ = UpdateMaxDistance(vb[i], va[j], va[(j+1)&3], maxDist) } } return maxDist }