mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2024-11-29 19:54:05 +01:00
57dc742c76
Bumps [github.com/KimMachineGun/automemlimit](https://github.com/KimMachineGun/automemlimit) from 0.2.4 to 0.2.5. - [Release notes](https://github.com/KimMachineGun/automemlimit/releases) - [Commits](https://github.com/KimMachineGun/automemlimit/compare/v0.2.4...v0.2.5) --- updated-dependencies: - dependency-name: github.com/KimMachineGun/automemlimit dependency-type: direct:production update-type: version-update:semver-patch ... Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
239 lines
6.5 KiB
Go
239 lines
6.5 KiB
Go
package ebpf
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"sync"
|
|
|
|
"github.com/cilium/ebpf/asm"
|
|
"github.com/cilium/ebpf/btf"
|
|
)
|
|
|
|
// splitSymbols splits insns into subsections delimited by Symbol Instructions.
|
|
// insns cannot be empty and must start with a Symbol Instruction.
|
|
//
|
|
// The resulting map is indexed by Symbol name.
|
|
func splitSymbols(insns asm.Instructions) (map[string]asm.Instructions, error) {
|
|
if len(insns) == 0 {
|
|
return nil, errors.New("insns is empty")
|
|
}
|
|
|
|
if insns[0].Symbol() == "" {
|
|
return nil, errors.New("insns must start with a Symbol")
|
|
}
|
|
|
|
var name string
|
|
progs := make(map[string]asm.Instructions)
|
|
for _, ins := range insns {
|
|
if sym := ins.Symbol(); sym != "" {
|
|
if progs[sym] != nil {
|
|
return nil, fmt.Errorf("insns contains duplicate Symbol %s", sym)
|
|
}
|
|
name = sym
|
|
}
|
|
|
|
progs[name] = append(progs[name], ins)
|
|
}
|
|
|
|
return progs, nil
|
|
}
|
|
|
|
// The linker is responsible for resolving bpf-to-bpf calls between programs
|
|
// within an ELF. Each BPF program must be a self-contained binary blob,
|
|
// so when an instruction in one ELF program section wants to jump to
|
|
// a function in another, the linker needs to pull in the bytecode
|
|
// (and BTF info) of the target function and concatenate the instruction
|
|
// streams.
|
|
//
|
|
// Later on in the pipeline, all call sites are fixed up with relative jumps
|
|
// within this newly-created instruction stream to then finally hand off to
|
|
// the kernel with BPF_PROG_LOAD.
|
|
//
|
|
// Each function is denoted by an ELF symbol and the compiler takes care of
|
|
// register setup before each jump instruction.
|
|
|
|
// hasFunctionReferences returns true if insns contains one or more bpf2bpf
|
|
// function references.
|
|
func hasFunctionReferences(insns asm.Instructions) bool {
|
|
for _, i := range insns {
|
|
if i.IsFunctionReference() {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// applyRelocations collects and applies any CO-RE relocations in insns.
|
|
//
|
|
// Passing a nil target will relocate against the running kernel. insns are
|
|
// modified in place.
|
|
func applyRelocations(insns asm.Instructions, local, target *btf.Spec) error {
|
|
var relos []*btf.CORERelocation
|
|
var reloInsns []*asm.Instruction
|
|
iter := insns.Iterate()
|
|
for iter.Next() {
|
|
if relo := btf.CORERelocationMetadata(iter.Ins); relo != nil {
|
|
relos = append(relos, relo)
|
|
reloInsns = append(reloInsns, iter.Ins)
|
|
}
|
|
}
|
|
|
|
if len(relos) == 0 {
|
|
return nil
|
|
}
|
|
|
|
target, err := maybeLoadKernelBTF(target)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
fixups, err := btf.CORERelocate(local, target, relos)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
for i, fixup := range fixups {
|
|
if err := fixup.Apply(reloInsns[i]); err != nil {
|
|
return fmt.Errorf("apply fixup %s: %w", &fixup, err)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// flattenPrograms resolves bpf-to-bpf calls for a set of programs.
|
|
//
|
|
// Links all programs in names by modifying their ProgramSpec in progs.
|
|
func flattenPrograms(progs map[string]*ProgramSpec, names []string) {
|
|
// Pre-calculate all function references.
|
|
refs := make(map[*ProgramSpec][]string)
|
|
for _, prog := range progs {
|
|
refs[prog] = prog.Instructions.FunctionReferences()
|
|
}
|
|
|
|
// Create a flattened instruction stream, but don't modify progs yet to
|
|
// avoid linking multiple times.
|
|
flattened := make([]asm.Instructions, 0, len(names))
|
|
for _, name := range names {
|
|
flattened = append(flattened, flattenInstructions(name, progs, refs))
|
|
}
|
|
|
|
// Finally, assign the flattened instructions.
|
|
for i, name := range names {
|
|
progs[name].Instructions = flattened[i]
|
|
}
|
|
}
|
|
|
|
// flattenInstructions resolves bpf-to-bpf calls for a single program.
|
|
//
|
|
// Flattens the instructions of prog by concatenating the instructions of all
|
|
// direct and indirect dependencies.
|
|
//
|
|
// progs contains all referenceable programs, while refs contain the direct
|
|
// dependencies of each program.
|
|
func flattenInstructions(name string, progs map[string]*ProgramSpec, refs map[*ProgramSpec][]string) asm.Instructions {
|
|
prog := progs[name]
|
|
|
|
insns := make(asm.Instructions, len(prog.Instructions))
|
|
copy(insns, prog.Instructions)
|
|
|
|
// Add all direct references of prog to the list of to be linked programs.
|
|
pending := make([]string, len(refs[prog]))
|
|
copy(pending, refs[prog])
|
|
|
|
// All references for which we've appended instructions.
|
|
linked := make(map[string]bool)
|
|
|
|
// Iterate all pending references. We can't use a range since pending is
|
|
// modified in the body below.
|
|
for len(pending) > 0 {
|
|
var ref string
|
|
ref, pending = pending[0], pending[1:]
|
|
|
|
if linked[ref] {
|
|
// We've already linked this ref, don't append instructions again.
|
|
continue
|
|
}
|
|
|
|
progRef := progs[ref]
|
|
if progRef == nil {
|
|
// We don't have instructions that go with this reference. This
|
|
// happens when calling extern functions.
|
|
continue
|
|
}
|
|
|
|
insns = append(insns, progRef.Instructions...)
|
|
linked[ref] = true
|
|
|
|
// Make sure we link indirect references.
|
|
pending = append(pending, refs[progRef]...)
|
|
}
|
|
|
|
return insns
|
|
}
|
|
|
|
// fixupAndValidate is called by the ELF reader right before marshaling the
|
|
// instruction stream. It performs last-minute adjustments to the program and
|
|
// runs some sanity checks before sending it off to the kernel.
|
|
func fixupAndValidate(insns asm.Instructions) error {
|
|
iter := insns.Iterate()
|
|
for iter.Next() {
|
|
ins := iter.Ins
|
|
|
|
// Map load was tagged with a Reference, but does not contain a Map pointer.
|
|
if ins.IsLoadFromMap() && ins.Reference() != "" && ins.Map() == nil {
|
|
return fmt.Errorf("instruction %d: map %s: %w", iter.Index, ins.Reference(), asm.ErrUnsatisfiedMapReference)
|
|
}
|
|
|
|
fixupProbeReadKernel(ins)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// fixupProbeReadKernel replaces calls to bpf_probe_read_{kernel,user}(_str)
|
|
// with bpf_probe_read(_str) on kernels that don't support it yet.
|
|
func fixupProbeReadKernel(ins *asm.Instruction) {
|
|
if !ins.IsBuiltinCall() {
|
|
return
|
|
}
|
|
|
|
// Kernel supports bpf_probe_read_kernel, nothing to do.
|
|
if haveProbeReadKernel() == nil {
|
|
return
|
|
}
|
|
|
|
switch asm.BuiltinFunc(ins.Constant) {
|
|
case asm.FnProbeReadKernel, asm.FnProbeReadUser:
|
|
ins.Constant = int64(asm.FnProbeRead)
|
|
case asm.FnProbeReadKernelStr, asm.FnProbeReadUserStr:
|
|
ins.Constant = int64(asm.FnProbeReadStr)
|
|
}
|
|
}
|
|
|
|
var kernelBTF struct {
|
|
sync.Mutex
|
|
spec *btf.Spec
|
|
}
|
|
|
|
// maybeLoadKernelBTF loads the current kernel's BTF if spec is nil, otherwise
|
|
// it returns spec unchanged.
|
|
//
|
|
// The kernel BTF is cached for the lifetime of the process.
|
|
func maybeLoadKernelBTF(spec *btf.Spec) (*btf.Spec, error) {
|
|
if spec != nil {
|
|
return spec, nil
|
|
}
|
|
|
|
kernelBTF.Lock()
|
|
defer kernelBTF.Unlock()
|
|
|
|
if kernelBTF.spec != nil {
|
|
return kernelBTF.spec, nil
|
|
}
|
|
|
|
var err error
|
|
kernelBTF.spec, err = btf.LoadKernelSpec()
|
|
return kernelBTF.spec, err
|
|
}
|