Implement basic GCD/LCM

This commit is contained in:
Kiëd Llaentenn 2021-09-30 14:57:00 +00:00 committed by PaddiM8
parent 89f4db665a
commit 31700634af

View File

@ -98,6 +98,8 @@ lazy_static! {
m.insert("max", (BinaryFuncInfo(max, Other), ""));
m.insert("min", (BinaryFuncInfo(min, Other), ""));
m.insert("hypot", (BinaryFuncInfo(hypot, Other), ""));
m.insert("gcd", (BinaryFuncInfo(gcd, Other), ""));
m.insert("lcm", (BinaryFuncInfo(lcm, Other), ""));
m.insert("log", (BinaryFuncInfo(logx, Other), ""));
m.insert("root", (BinaryFuncInfo(nth_root, Other), ""));
m
@ -498,6 +500,34 @@ pub mod funcs {
KalkNum::new_with_imaginary(x.value.fract(), &x.unit, x.imaginary_value.fract())
}
pub fn gcd(x: KalkNum, y: KalkNum) -> KalkNum {
if x.has_imaginary() || y.has_imaginary() {
if x.imaginary_value.fract() != 0 || y.imaginary_value.fract() != 0 {
// Not a Gaussian integer!
}
// TODO
todo!();
}
if x.value < 0f64 || y.value < 0f64 {
return gcd(KalkNum::new(x.value.abs(), &x.unit), KalkNum::new(y.value.abs(), &y.unit));
}
// Euclidean GCD algorithm
let mut x_a = x.clone();
let mut y_a = y.clone();
while !y_a.value.eq(&0) {
let t = y_a.value.clone();
y_a.value = x_a.value % y_a.value;
x_a.value = t;
}
// Usually we'd need to return max(x, -x), but since we've handled negative
// values above, that is unnecessary.
return x_a;
}
pub fn im(x: KalkNum) -> KalkNum {
KalkNum::new_with_imaginary(x.value, "", KalkNum::default().value)
}
@ -514,6 +544,16 @@ pub mod funcs {
})
}
// ⎛ ⎞
// ⎜ ⎜a⎜ ⎟
// lcm(a, b) = ⎜ ───────── ⎟ × ⎜b⎜
// ⎜ gcd(a, b) ⎟
// ⎝ ⎠
pub fn lcm(x: KalkNum, y: KalkNum) -> KalkNum {
let gcd = gcd(x.clone(), y.clone());
return abs(x).div_without_unit(gcd).mul_without_unit(y);
}
pub fn log(x: KalkNum) -> KalkNum {
if x.has_imaginary() || x.value < 0f64 {
// ln(z) / ln(10)