mirror of
https://github.com/PaddiM8/kalker.git
synced 2025-01-19 03:38:13 +01:00
Switched to Simpson's rule (composite, 3/8) for integration
This commit is contained in:
parent
0dc2e0572f
commit
4a46fe9fc7
@ -9,7 +9,6 @@ pub fn integrate(
|
||||
context: &mut interpreter::Context,
|
||||
expressions: &[Expr],
|
||||
) -> Result<KalkNum, CalcError> {
|
||||
let mut result = KalkNum::default();
|
||||
let mut integration_variable: Option<&str> = None;
|
||||
|
||||
// integral(a, b, expr dx)
|
||||
@ -26,53 +25,54 @@ pub fn integrate(
|
||||
return Err(CalcError::ExpectedDx);
|
||||
}
|
||||
|
||||
// delta_x/2[f(a) + 2f(x_1) + 2f(x_2) + ...2f(x_n) + f(b)]
|
||||
// where delta_x = (b - a) / n
|
||||
// and x_n = a + i * delta_x
|
||||
|
||||
// f(a)
|
||||
context.symbol_table.set(Stmt::VarDecl(
|
||||
integration_variable.unwrap().into(),
|
||||
Box::new(expressions[0].clone()),
|
||||
));
|
||||
|
||||
// "dx" is still in the expression. Set dx = 1, so that it doesn't affect the expression value.
|
||||
context.symbol_table.set(Stmt::VarDecl(
|
||||
format!("d{}", integration_variable.unwrap()),
|
||||
Box::new(Expr::Literal(1f64)),
|
||||
));
|
||||
|
||||
result.value += interpreter::eval_expr(context, &expressions[2], "")?.value;
|
||||
|
||||
// 2f(x_n)
|
||||
// where x_n = a + i * delta_x
|
||||
const N: i32 = 100;
|
||||
let a = interpreter::eval_expr(context, &expressions[0], "")?
|
||||
.value
|
||||
.to_f64();
|
||||
let b = interpreter::eval_expr(context, &expressions[1], "")?
|
||||
.value
|
||||
.to_f64();
|
||||
let delta_x = (b - a) / N as f64;
|
||||
for i in 1..N {
|
||||
context.symbol_table.set(Stmt::VarDecl(
|
||||
integration_variable.unwrap().into(),
|
||||
Box::new(Expr::Literal(a + i as f64 * delta_x)),
|
||||
));
|
||||
|
||||
// 2f(x_n)
|
||||
result.value += 2 * interpreter::eval_expr(context, &expressions[2], "")?.value;
|
||||
simpsons_rule(
|
||||
context,
|
||||
&expressions[0],
|
||||
&expressions[1],
|
||||
&expressions[2],
|
||||
integration_variable.unwrap(),
|
||||
)
|
||||
}
|
||||
|
||||
// f(b)
|
||||
/// Composite Simpson's 3/8 rule
|
||||
fn simpsons_rule(
|
||||
context: &mut interpreter::Context,
|
||||
a_expr: &Expr,
|
||||
b_expr: &Expr,
|
||||
expr: &Expr,
|
||||
integration_variable: &str,
|
||||
) -> Result<KalkNum, CalcError> {
|
||||
let mut result = KalkNum::default();
|
||||
|
||||
const N: i32 = 900;
|
||||
let a = interpreter::eval_expr(context, a_expr, "")?.value.to_f64();
|
||||
let b = interpreter::eval_expr(context, b_expr, "")?.value.to_f64();
|
||||
let h = (b - a) / N as f64;
|
||||
for i in 0..=N {
|
||||
context.symbol_table.set(Stmt::VarDecl(
|
||||
integration_variable.unwrap().into(),
|
||||
Box::new(expressions[1].clone()),
|
||||
integration_variable.into(),
|
||||
Box::new(Expr::Literal(a + i as f64 * h)),
|
||||
));
|
||||
result.value += interpreter::eval_expr(context, &expressions[2], "")?.value;
|
||||
|
||||
// Finally, delta_x/2 for all of it
|
||||
result.value *= delta_x / 2f64;
|
||||
let factor = if i == 0 || i == N {
|
||||
1
|
||||
} else if i % 3 == 0 {
|
||||
2
|
||||
} else {
|
||||
3
|
||||
};
|
||||
|
||||
return Ok(result);
|
||||
// factor * f(x_n)
|
||||
result.value += factor * interpreter::eval_expr(context, expr, "")?.value;
|
||||
}
|
||||
|
||||
result.value *= (3f64 * h) / 8f64;
|
||||
|
||||
Ok(result)
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user