Switched to Simpson's rule (composite, 3/8) for integration

This commit is contained in:
bakk 2021-05-17 18:05:22 +02:00
parent 0dc2e0572f
commit 4a46fe9fc7

View File

@ -9,7 +9,6 @@ pub fn integrate(
context: &mut interpreter::Context,
expressions: &[Expr],
) -> Result<KalkNum, CalcError> {
let mut result = KalkNum::default();
let mut integration_variable: Option<&str> = None;
// integral(a, b, expr dx)
@ -26,53 +25,54 @@ pub fn integrate(
return Err(CalcError::ExpectedDx);
}
// delta_x/2[f(a) + 2f(x_1) + 2f(x_2) + ...2f(x_n) + f(b)]
// where delta_x = (b - a) / n
// and x_n = a + i * delta_x
// f(a)
context.symbol_table.set(Stmt::VarDecl(
integration_variable.unwrap().into(),
Box::new(expressions[0].clone()),
));
// "dx" is still in the expression. Set dx = 1, so that it doesn't affect the expression value.
context.symbol_table.set(Stmt::VarDecl(
format!("d{}", integration_variable.unwrap()),
Box::new(Expr::Literal(1f64)),
));
result.value += interpreter::eval_expr(context, &expressions[2], "")?.value;
// 2f(x_n)
// where x_n = a + i * delta_x
const N: i32 = 100;
let a = interpreter::eval_expr(context, &expressions[0], "")?
.value
.to_f64();
let b = interpreter::eval_expr(context, &expressions[1], "")?
.value
.to_f64();
let delta_x = (b - a) / N as f64;
for i in 1..N {
context.symbol_table.set(Stmt::VarDecl(
integration_variable.unwrap().into(),
Box::new(Expr::Literal(a + i as f64 * delta_x)),
));
// 2f(x_n)
result.value += 2 * interpreter::eval_expr(context, &expressions[2], "")?.value;
simpsons_rule(
context,
&expressions[0],
&expressions[1],
&expressions[2],
integration_variable.unwrap(),
)
}
// f(b)
/// Composite Simpson's 3/8 rule
fn simpsons_rule(
context: &mut interpreter::Context,
a_expr: &Expr,
b_expr: &Expr,
expr: &Expr,
integration_variable: &str,
) -> Result<KalkNum, CalcError> {
let mut result = KalkNum::default();
const N: i32 = 900;
let a = interpreter::eval_expr(context, a_expr, "")?.value.to_f64();
let b = interpreter::eval_expr(context, b_expr, "")?.value.to_f64();
let h = (b - a) / N as f64;
for i in 0..=N {
context.symbol_table.set(Stmt::VarDecl(
integration_variable.unwrap().into(),
Box::new(expressions[1].clone()),
integration_variable.into(),
Box::new(Expr::Literal(a + i as f64 * h)),
));
result.value += interpreter::eval_expr(context, &expressions[2], "")?.value;
// Finally, delta_x/2 for all of it
result.value *= delta_x / 2f64;
let factor = if i == 0 || i == N {
1
} else if i % 3 == 0 {
2
} else {
3
};
return Ok(result);
// factor * f(x_n)
result.value += factor * interpreter::eval_expr(context, expr, "")?.value;
}
result.value *= (3f64 * h) / 8f64;
Ok(result)
}