Fixed inversion for (function) variables and added unit tests for the inverter.

This commit is contained in:
PaddiM8 2020-06-17 17:45:46 +02:00
parent 22816bcdc3
commit 643509ce4a

View File

@ -24,7 +24,7 @@ fn invert(
} }
Expr::Unary(op, expr) => invert_unary(target_expr, op, &expr), Expr::Unary(op, expr) => invert_unary(target_expr, op, &expr),
Expr::Unit(identifier, expr) => invert_unit(target_expr, &identifier, &expr), Expr::Unit(identifier, expr) => invert_unit(target_expr, &identifier, &expr),
Expr::Var(_) => Ok((target_expr, expr.clone())), Expr::Var(identifier) => invert_var(target_expr, symbol_table, identifier),
Expr::Group(expr) => Ok((target_expr, *expr.clone())), Expr::Group(expr) => Ok((target_expr, *expr.clone())),
Expr::FnCall(identifier, arguments) => { Expr::FnCall(identifier, arguments) => {
invert_fn_call(target_expr, symbol_table, &identifier, arguments) invert_fn_call(target_expr, symbol_table, &identifier, arguments)
@ -50,7 +50,7 @@ fn invert_binary(
target_expr, target_expr,
symbol_table, symbol_table,
left, left,
op, &TokenKind::Plus,
&multiply_into(&Expr::Literal(String::from("-1")), inside_group)?, &multiply_into(&Expr::Literal(String::from("-1")), inside_group)?,
); );
} }
@ -107,7 +107,7 @@ fn invert_binary(
// If the left expression contains the unit, invert the right one instead, // If the left expression contains the unit, invert the right one instead,
// since the unit should not be moved. // since the unit should not be moved.
if contains_the_unit(left) { if contains_the_unit(symbol_table, left) {
return Ok(invert( return Ok(invert(
Expr::Binary(Box::new(target_expr), op_inv, Box::new(right.clone())), Expr::Binary(Box::new(target_expr), op_inv, Box::new(right.clone())),
symbol_table, symbol_table,
@ -151,6 +151,18 @@ fn invert_unit(
unimplemented!() unimplemented!()
} }
fn invert_var(
target_expr: Expr,
symbol_table: &mut SymbolTable,
identifier: &str,
) -> Result<(Expr, Expr), CalcError> {
if let Some(Stmt::VarDecl(_, var_expr)) = symbol_table.get_var(identifier).cloned() {
invert(target_expr, symbol_table, &var_expr)
} else {
Ok((target_expr, Expr::Var(identifier.into())))
}
}
fn invert_fn_call( fn invert_fn_call(
target_expr: Expr, target_expr: Expr,
symbol_table: &mut SymbolTable, symbol_table: &mut SymbolTable,
@ -165,7 +177,7 @@ fn invert_fn_call(
return Err(CalcError::UndefinedFn(identifier.into())); return Err(CalcError::UndefinedFn(identifier.into()));
}; };
// Make sure the input-expression is valid. // Make sure the input is valid.
if parameters.len() != arguments.len() { if parameters.len() != arguments.len() {
return Err(CalcError::IncorrectAmountOfArguments( return Err(CalcError::IncorrectAmountOfArguments(
parameters.len(), parameters.len(),
@ -187,17 +199,26 @@ fn invert_fn_call(
invert(target_expr, symbol_table, &body) invert(target_expr, symbol_table, &body)
} }
fn contains_the_unit(expr: &Expr) -> bool { fn contains_the_unit(symbol_table: &SymbolTable, expr: &Expr) -> bool {
// Recursively scan the expression for the unit. // Recursively scan the expression for the unit.
match expr { match expr {
Expr::Binary(left, _, right) => contains_the_unit(left) || contains_the_unit(right), Expr::Binary(left, _, right) => {
Expr::Unary(_, expr) => contains_the_unit(expr), contains_the_unit(symbol_table, left) || contains_the_unit(symbol_table, right)
Expr::Unit(_, expr) => contains_the_unit(expr), }
Expr::Var(identifier) => identifier == DECL_UNIT, Expr::Unary(_, expr) => contains_the_unit(symbol_table, expr),
Expr::Group(expr) => contains_the_unit(expr), Expr::Unit(_, expr) => contains_the_unit(symbol_table, expr),
Expr::Var(identifier) => {
identifier == DECL_UNIT
|| if let Some(Stmt::VarDecl(_, var_expr)) = symbol_table.get_var(identifier) {
contains_the_unit(symbol_table, var_expr)
} else {
false
}
}
Expr::Group(expr) => contains_the_unit(symbol_table, expr),
Expr::FnCall(_, args) => { Expr::FnCall(_, args) => {
for arg in args { for arg in args {
if contains_the_unit(arg) { if contains_the_unit(symbol_table, arg) {
return true; return true;
} }
} }
@ -235,3 +256,200 @@ fn multiply_into(expr: &Expr, base_expr: &Expr) -> Result<Expr, CalcError> {
_ => unimplemented!(), _ => unimplemented!(),
} }
} }
#[allow(unused_imports, dead_code)] // Getting warnings for some reason
mod tests {
use crate::ast::Expr;
use crate::lexer::TokenKind::*;
use crate::symbol_table::SymbolTable;
use crate::test_helpers::*;
fn decl_unit() -> Box<Expr> {
Box::new(Expr::Var(crate::parser::DECL_UNIT.into()))
}
#[test]
fn test_binary() {
let ladd = binary(decl_unit(), Plus, literal("1"));
let lsub = binary(decl_unit(), Minus, literal("1"));
let lmul = binary(decl_unit(), Star, literal("1"));
let ldiv = binary(decl_unit(), Slash, literal("1"));
let radd = binary(literal("1"), Plus, decl_unit());
let rsub = binary(literal("1"), Minus, decl_unit());
let rmul = binary(literal("1"), Star, decl_unit());
let rdiv = binary(literal("1"), Slash, decl_unit());
let mut symbol_table = SymbolTable::new();
assert_eq!(
ladd.invert(&mut symbol_table).unwrap(),
*binary(decl_unit(), Minus, literal("1"))
);
assert_eq!(
lsub.invert(&mut symbol_table).unwrap(),
*binary(decl_unit(), Plus, literal("1"))
);
assert_eq!(
lmul.invert(&mut symbol_table).unwrap(),
*binary(decl_unit(), Slash, literal("1"))
);
assert_eq!(
ldiv.invert(&mut symbol_table).unwrap(),
*binary(decl_unit(), Star, literal("1"))
);
assert_eq!(
radd.invert(&mut symbol_table).unwrap(),
*binary(decl_unit(), Minus, literal("1"))
);
assert_eq!(
rsub.invert(&mut symbol_table).unwrap(),
*unary(Minus, binary(decl_unit(), Plus, literal("1")))
);
assert_eq!(
rmul.invert(&mut symbol_table).unwrap(),
*binary(decl_unit(), Slash, literal("1"))
);
assert_eq!(
rdiv.invert(&mut symbol_table).unwrap(),
*binary(decl_unit(), Star, literal("1"))
);
}
#[test]
fn test_unary() {
let neg = unary(Minus, decl_unit());
let mut symbol_table = SymbolTable::new();
assert_eq!(neg.invert(&mut symbol_table).unwrap(), *neg);
}
#[test]
fn test_fn_call() {
let call_with_literal = binary(fn_call("f", vec![*literal("2")]), Plus, decl_unit());
let call_with_decl_unit = fn_call("f", vec![*decl_unit()]);
let call_with_decl_unit_and_literal =
fn_call("f", vec![*binary(decl_unit(), Plus, literal("2"))]);
let decl = fn_decl(
"f",
vec![String::from("x")],
binary(var("x"), Plus, literal("1")),
);
let mut symbol_table = SymbolTable::new();
symbol_table.insert(decl);
assert_eq!(
call_with_literal.invert(&mut symbol_table).unwrap(),
*binary(decl_unit(), Minus, fn_call("f", vec![*literal("2")])),
);
assert_eq!(
call_with_decl_unit.invert(&mut symbol_table).unwrap(),
*binary(decl_unit(), Minus, literal("1"))
);
assert_eq!(
call_with_decl_unit_and_literal
.invert(&mut symbol_table)
.unwrap(),
*binary(
binary(decl_unit(), Minus, literal("1")),
Minus,
literal("2")
)
);
}
#[test]
fn test_group() {
let group_x = binary(
group(binary(decl_unit(), Plus, literal("3"))),
Star,
literal("2"),
);
let group_unary_minus = binary(
literal("2"),
Minus,
group(binary(decl_unit(), Plus, literal("3"))),
);
let x_group_add = binary(
literal("2"),
Star,
group(binary(decl_unit(), Plus, literal("3"))),
);
let x_group_sub = binary(
literal("2"),
Star,
group(binary(decl_unit(), Minus, literal("3"))),
);
let x_group_mul = binary(
literal("2"),
Star,
group(binary(decl_unit(), Star, literal("3"))),
);
let x_group_div = binary(
literal("2"),
Star,
group(binary(decl_unit(), Slash, literal("3"))),
);
let mut symbol_table = SymbolTable::new();
assert_eq!(
group_x.invert(&mut symbol_table).unwrap(),
*binary(
binary(decl_unit(), Minus, binary(literal("2"), Star, literal("3"))),
Slash,
literal("2")
)
);
assert_eq!(
group_unary_minus.invert(&mut symbol_table).unwrap(),
*binary(
binary(
binary(decl_unit(), Minus, literal("2")),
Minus,
binary(literal("-1"), Star, literal("3"))
),
Slash,
literal("-1")
)
);
assert_eq!(
x_group_add.invert(&mut symbol_table).unwrap(),
*binary(
binary(decl_unit(), Minus, binary(literal("2"), Star, literal("3"))),
Slash,
literal("2")
)
);
assert_eq!(
x_group_sub.invert(&mut symbol_table).unwrap(),
*binary(
binary(decl_unit(), Plus, binary(literal("2"), Star, literal("3"))),
Slash,
literal("2")
)
);
assert_eq!(
x_group_mul.invert(&mut symbol_table).unwrap(),
*binary(
binary(decl_unit(), Slash, literal("3")),
Slash,
literal("2")
)
);
assert_eq!(
x_group_div.invert(&mut symbol_table).unwrap(),
*binary(binary(decl_unit(), Star, literal("3")), Slash, literal("2"))
);
}
#[test]
fn test_multiple_decl_units() {
let add_two = binary(decl_unit(), Plus, decl_unit());
let mut symbol_table = SymbolTable::new();
assert_eq!(
add_two.invert(&mut symbol_table).unwrap(),
*binary(decl_unit(), Slash, literal("2"))
);
}
}