kalker/kalk/src/parser.rs

991 lines
32 KiB
Rust

use crate::ast::Identifier;
use crate::kalk_num::KalkNum;
use crate::{
ast::{Expr, Stmt},
interpreter, inverter,
lexer::{Lexer, Token, TokenKind},
prelude,
symbol_table::SymbolTable,
};
use wasm_bindgen::prelude::*;
pub const DECL_UNIT: &'static str = ".u";
pub const DEFAULT_ANGLE_UNIT: &'static str = "rad";
/// Struct containing the current state of the parser. It stores user-defined functions and variables.
#[wasm_bindgen]
pub struct Context {
tokens: Vec<Token>,
pos: usize,
symbol_table: SymbolTable,
angle_unit: String,
timeout: Option<u32>,
/// This is true whenever the parser is currently parsing a unit declaration.
/// It is necessary to keep track of this in order to know when to find (figure out) units that haven't been defined yet.
/// Unit names are instead treated as variables.
parsing_unit_decl: bool,
/// When a unit declaration is being parsed, this value will be set
/// whenever a unit in the expression is found. Eg. unit a = 3b, it will be set to Some("b")
unit_decl_base_unit: Option<String>,
parsing_identifier_stmt: bool,
equation_variable: Option<String>,
contains_equation_equal_sign: bool,
is_in_integral: bool,
current_function: Option<String>,
current_function_parameters: Option<Vec<String>>,
}
#[wasm_bindgen]
impl Context {
#[wasm_bindgen(constructor)]
pub fn new() -> Self {
let mut context = Self {
tokens: Vec::new(),
pos: 0,
symbol_table: SymbolTable::new(),
angle_unit: DEFAULT_ANGLE_UNIT.into(),
timeout: None,
parsing_unit_decl: false,
unit_decl_base_unit: None,
parsing_identifier_stmt: false,
equation_variable: None,
contains_equation_equal_sign: false,
is_in_integral: false,
current_function: None,
current_function_parameters: None,
};
parse(&mut context, crate::prelude::INIT).unwrap();
context
}
pub fn set_angle_unit(mut self, unit: &str) -> Self {
self.angle_unit = unit.into();
self
}
/// Set the timeout in milliseconds.
/// The calculation will stop after this amount of time has passed.
#[cfg(not(target_arch = "wasm32"))]
pub fn set_timeout(mut self, timeout: Option<u32>) -> Self {
self.timeout = timeout;
self
}
#[wasm_bindgen(js_name = evaluate)]
#[cfg(not(feature = "rug"))]
pub fn js_eval(&mut self, input: &str) -> Result<Option<KalkNum>, JsValue> {
let result = eval(self, input);
match result {
Ok(Some(value)) => Ok(Some(value)),
Ok(None) => Ok(None),
Err(err) => Err(err.to_string().into()),
}
}
}
impl Default for Context {
fn default() -> Self {
Self::new()
}
}
/// Error that occured during parsing or evaluation.
#[derive(Debug, Clone, PartialEq)]
pub enum CalcError {
ExpectedDx,
IncorrectAmountOfArguments(usize, String, usize),
InvalidNumberLiteral(String),
InvalidOperator,
InvalidUnit,
TimedOut,
VariableReferencesItself,
UnexpectedToken(TokenKind, TokenKind),
UndefinedFn(String),
UndefinedVar(String),
UnableToInvert(String),
UnableToSolveEquation,
UnableToParseExpression,
Unknown,
}
impl ToString for CalcError {
fn to_string(&self) -> String {
match self {
CalcError::ExpectedDx => format!("Expected eg. dx, to specify for which variable the operation is being done to. Example with integration: ∫(0, 1, x dx) or ∫(0, 1, x, dx). You may need to put parenthesis around the expression before dx/dy/du/etc."),
CalcError::IncorrectAmountOfArguments(expected, func, got) => format!(
"Expected {} arguments for function {}, but got {}.",
expected, func, got
),
CalcError::InvalidNumberLiteral(x) => format!("Invalid number literal: '{}'.", x),
CalcError::InvalidOperator => format!("Invalid operator."),
CalcError::InvalidUnit => format!("Invalid unit."),
CalcError::TimedOut => format!("Operation took too long."),
CalcError::VariableReferencesItself => format!("Variable references itself."),
CalcError::UnexpectedToken(got, expected) => {
format!("Unexpected token: '{:?}', expected '{:?}'.", got, expected)
}
CalcError::UnableToInvert(msg) => format!("Unable to invert: {}", msg),
CalcError::UndefinedFn(name) => format!("Undefined function: '{}'.", name),
CalcError::UndefinedVar(name) => format!("Undefined variable: '{}'.", name),
CalcError::UnableToParseExpression => format!("Unable to parse expression."),
CalcError::UnableToSolveEquation => format!("Unable to solve equation."),
CalcError::Unknown => format!("Unknown error."),
}
}
}
/// Evaluate expressions/declarations and return the answer.
///
/// `None` will be returned if the last statement is a declaration.
pub fn eval(
context: &mut Context,
input: &str,
#[cfg(feature = "rug")] precision: u32,
) -> Result<Option<KalkNum>, CalcError> {
// Variable and function declaration parsers will set this to false
// if the equal sign is for one of those instead.
context.contains_equation_equal_sign = input.contains("=");
let statements = parse(context, input)?;
let mut interpreter = interpreter::Context::new(
&mut context.symbol_table,
&context.angle_unit,
#[cfg(feature = "rug")]
precision,
if let Some(timeout) = context.timeout {
Some(timeout as u128)
} else {
None
},
);
interpreter.interpret(statements)
}
/// Parse expressions/declarations and return a syntax tree.
///
/// `None` will be returned if the last statement is a declaration.
pub fn parse(context: &mut Context, input: &str) -> Result<Vec<Stmt>, CalcError> {
context.tokens = Lexer::lex(input);
context.pos = 0;
context.parsing_unit_decl = false;
context.unit_decl_base_unit = None;
let mut statements: Vec<Stmt> = Vec::new();
while !is_at_end(context) {
statements.push(parse_stmt(context)?);
if match_token(context, TokenKind::Semicolon) {
advance(context);
}
}
Ok(statements)
}
fn parse_stmt(context: &mut Context) -> Result<Stmt, CalcError> {
if match_token(context, TokenKind::Identifier) {
return Ok(match peek_next(context).kind {
TokenKind::Equals => parse_var_decl_stmt(context)?,
TokenKind::OpenParenthesis => parse_identifier_stmt(context)?,
_ => Stmt::Expr(Box::new(parse_expr(context)?)),
});
} else if match_token(context, TokenKind::UnitKeyword) {
return parse_unit_decl_stmt(context);
}
Ok(Stmt::Expr(Box::new(parse_expr(context)?)))
}
fn parse_identifier_stmt(context: &mut Context) -> Result<Stmt, CalcError> {
let began_at = context.pos;
context.parsing_identifier_stmt = true;
let primary = parse_primary(context)?; // Since function declarations and function calls look the same at first, simply parse a "function call", and re-use the data.
context.parsing_identifier_stmt = false;
// If `primary` is followed by an equal sign
// treat it as a function declaration
if let TokenKind::Equals = peek(context).kind {
// Use the "function call" expression that was parsed, and put its values into a function declaration statement instead.
if let Expr::FnCall(identifier, parameters) = primary {
if !prelude::is_prelude_func(&identifier.full_name) {
advance(context);
// All the "arguments" are expected to be parsed as variables,
// since parameter definitions look the same as variable references.
// Extract these.
let mut parameter_identifiers = Vec::new();
for parameter in parameters {
if let Expr::Var(parameter_identifier) = parameter {
parameter_identifiers.push(format!(
"{}-{}",
&identifier.pure_name, &parameter_identifier.full_name
));
}
}
context.current_function = Some(identifier.pure_name.clone());
context.current_function_parameters = Some(parameter_identifiers.clone());
context.contains_equation_equal_sign = false;
context.equation_variable = None;
let expr = parse_expr(context)?;
let fn_decl = Stmt::FnDecl(identifier, parameter_identifiers, Box::new(expr));
context.current_function = None;
context.current_function_parameters = None;
// Insert the function declaration into the symbol table during parsing
// so that the parser can find out if particular functions exist.
context.symbol_table.insert(fn_decl.clone());
return Ok(fn_decl);
}
}
}
// It is a function call or eg. x(x + 3), not a function declaration.
// Redo the parsing for this specific part.
context.pos = began_at;
Ok(Stmt::Expr(Box::new(parse_expr(context)?)))
}
fn parse_var_decl_stmt(context: &mut Context) -> Result<Stmt, CalcError> {
let identifier = advance(context).clone();
advance(context); // Equal sign
context.contains_equation_equal_sign = false;
context.equation_variable = None;
let expr = parse_expr(context)?;
if inverter::contains_var(&context.symbol_table, &expr, &identifier.value) {
return Err(CalcError::VariableReferencesItself);
}
Ok(Stmt::VarDecl(
Identifier::from_full_name(&identifier.value),
Box::new(expr),
))
}
fn parse_unit_decl_stmt(context: &mut Context) -> Result<Stmt, CalcError> {
advance(context); // Unit keyword
let identifier = advance(context).clone();
consume(context, TokenKind::Equals)?;
// Parse the mut definition
context.unit_decl_base_unit = None;
context.parsing_unit_decl = true;
let def = parse_expr(context)?;
context.parsing_unit_decl = false;
let base_unit = if let Some(base_unit) = &context.unit_decl_base_unit {
base_unit.clone()
} else {
return Err(CalcError::InvalidUnit);
};
// Automatically create a second unit decl with the expression inverted.
// This will turn eg. unit a = 3b, into unit b = a/3
// This is so that you only have to define `a`, and it will figure out the formula for `b` since it is used in the formula for `a`.
let stmt_inv = Stmt::UnitDecl(
base_unit.clone(),
identifier.value.clone(),
Box::new(def.invert(&mut context.symbol_table, DECL_UNIT)?),
);
let stmt = Stmt::UnitDecl(identifier.value, base_unit, Box::new(def));
context.symbol_table.insert(stmt.clone());
context.symbol_table.insert(stmt_inv);
Ok(stmt)
}
fn parse_expr(context: &mut Context) -> Result<Expr, CalcError> {
Ok(parse_equation(context)?)
}
fn parse_equation(context: &mut Context) -> Result<Expr, CalcError> {
let left = parse_to(context)?;
if match_token(context, TokenKind::Equals) {
advance(context);
let right = parse_to(context)?;
let var_name = if let Some(var_name) = &context.equation_variable {
var_name
} else {
return Err(CalcError::UnableToSolveEquation);
};
let inverted = if inverter::contains_var(&mut context.symbol_table, &left, var_name) {
left.invert_to_target(&mut context.symbol_table, right, var_name)?
} else {
right.invert_to_target(&mut context.symbol_table, left, var_name)?
};
// If the inverted expression still contains the variable,
// the equation solving failed.
if inverter::contains_var(&mut context.symbol_table, &inverted, var_name) {
return Err(CalcError::UnableToSolveEquation);
}
context.symbol_table.insert(Stmt::VarDecl(
Identifier::from_full_name(var_name),
Box::new(inverted.clone()),
));
return Ok(inverted);
}
Ok(left)
}
fn parse_to(context: &mut Context) -> Result<Expr, CalcError> {
let left = parse_sum(context)?;
if match_token(context, TokenKind::ToKeyword) {
advance(context);
let right = Expr::Var(Identifier::from_full_name(&advance(context).value)); // Parse this as a variable for now.
return Ok(Expr::Binary(
Box::new(left),
TokenKind::ToKeyword,
Box::new(right),
));
}
Ok(left)
}
fn parse_sum(context: &mut Context) -> Result<Expr, CalcError> {
let mut left = parse_factor(context)?;
while match_token(context, TokenKind::Plus) || match_token(context, TokenKind::Minus) {
let op = peek(context).kind;
advance(context);
let right = parse_factor(context)?;
left = Expr::Binary(Box::new(left), op, Box::new(right));
}
Ok(left)
}
fn parse_factor(context: &mut Context) -> Result<Expr, CalcError> {
let mut left = parse_unit(context)?;
if let Expr::Unary(TokenKind::Percent, percent_left) = left.clone() {
let try_parse = parse_factor(context);
if !try_parse.is_err() {
left = Expr::Binary(
percent_left,
TokenKind::Percent,
Box::new(try_parse.unwrap()),
);
}
}
while match_token(context, TokenKind::Star)
|| match_token(context, TokenKind::Slash)
|| match_token(context, TokenKind::Percent)
|| match_token(context, TokenKind::Identifier)
|| match_token(context, TokenKind::Literal)
|| match_token(context, TokenKind::OpenParenthesis)
{
// If the token is an identifier, literal, or open parenthesis,
// assume it's multiplication. Eg. 3y or (3x + 2)(2 + 3)
let op = match peek(context).kind {
TokenKind::Identifier | TokenKind::Literal | TokenKind::OpenParenthesis => {
TokenKind::Star
}
_ => advance(context).kind,
};
let right = parse_unit(context)?;
left = Expr::Binary(Box::new(left), op, Box::new(right));
}
Ok(left)
}
fn parse_unit(context: &mut Context) -> Result<Expr, CalcError> {
let expr = parse_unary(context)?;
let peek = &peek(&context).value;
if match_token(context, TokenKind::Identifier) && context.symbol_table.contains_unit(&peek) {
return Ok(Expr::Unit(
advance(context).value.to_string(),
Box::new(expr),
));
}
Ok(expr)
}
fn parse_unary(context: &mut Context) -> Result<Expr, CalcError> {
if match_token(context, TokenKind::Minus) {
let op = advance(context).kind;
let expr = Box::new(parse_unary(context)?);
return Ok(Expr::Unary(op, expr));
}
let expr = parse_exponent(context)?;
if match_token(context, TokenKind::Percent) {
Ok(Expr::Unary(advance(context).kind, Box::new(expr)))
} else {
Ok(expr)
}
}
fn parse_exponent(context: &mut Context) -> Result<Expr, CalcError> {
let left = parse_factorial(context)?;
if match_token(context, TokenKind::Power) {
let op = advance(context).kind;
let right = Box::new(parse_exponent(context)?);
return Ok(Expr::Binary(Box::new(left), op, right));
}
Ok(left)
}
fn parse_factorial(context: &mut Context) -> Result<Expr, CalcError> {
let expr = parse_primary(context)?;
Ok(if match_token(context, TokenKind::Exclamation) {
advance(context);
Expr::Unary(TokenKind::Exclamation, Box::new(expr))
} else {
expr
})
}
fn parse_primary(context: &mut Context) -> Result<Expr, CalcError> {
let expr = match peek(context).kind {
TokenKind::OpenParenthesis => parse_group(context)?,
TokenKind::Pipe | TokenKind::OpenCeil | TokenKind::OpenFloor => parse_group_fn(context)?,
TokenKind::Identifier => parse_identifier(context)?,
TokenKind::Literal => Expr::Literal(string_to_num(&advance(context).value)?),
_ => return Err(CalcError::UnableToParseExpression),
};
Ok(expr)
}
fn parse_group(context: &mut Context) -> Result<Expr, CalcError> {
advance(context);
let group_expr = Expr::Group(Box::new(parse_expr(context)?));
consume(context, TokenKind::ClosedParenthesis)?;
Ok(group_expr)
}
fn parse_group_fn(context: &mut Context) -> Result<Expr, CalcError> {
let name = match &advance(context).kind {
TokenKind::Pipe => "abs",
TokenKind::OpenCeil => "ceil",
TokenKind::OpenFloor => "floor",
_ => unreachable!(),
};
let expr = parse_expr(context)?;
advance(context);
Ok(Expr::FnCall(Identifier::from_full_name(name), vec![expr]))
}
fn parse_identifier(context: &mut Context) -> Result<Expr, CalcError> {
let identifier = Identifier::from_full_name(&advance(context).value);
// Eg. sqrt64
if match_token(context, TokenKind::Literal)
|| peek(context).value == "π"
|| peek(context).value == "τ"
|| peek(context).value == "ϕ"
{
// If there is a function with this name, parse it as a function, with the next token as the argument.
if context.symbol_table.contains_fn(&identifier.pure_name) {
let parameter = parse_primary(context)?;
return Ok(Expr::FnCall(identifier, vec![parameter]));
}
}
let parse_as_var_instead = match_token(context, TokenKind::OpenParenthesis)
&& !context.parsing_identifier_stmt
&& !context.symbol_table.contains_fn(&identifier.pure_name);
// Eg. sqrt(64)
// If the function doesn't exist, parse it as a variable and multiplication instead.
// Although, if the parse_identifier_stmt function called this function,
// parse it as a function anyway, since it might be creating one.
if !parse_as_var_instead && match_token(context, TokenKind::OpenParenthesis) {
advance(context);
let is_integral = identifier.full_name == "integrate"
|| identifier.full_name == "integral"
|| identifier.full_name == "";
if is_integral {
context.is_in_integral = true;
}
let mut parameters = Vec::new();
parameters.push(parse_expr(context)?);
while match_token(context, TokenKind::Comma) {
advance(context);
parameters.push(parse_expr(context)?);
}
consume(context, TokenKind::ClosedParenthesis)?;
if is_integral {
context.is_in_integral = false;
}
return Ok(Expr::FnCall(identifier, parameters));
}
// Eg. x
if parse_as_var_instead || context.symbol_table.contains_var(&identifier.pure_name) {
Ok(Expr::Var(identifier))
} else if context.parsing_unit_decl {
context.unit_decl_base_unit = Some(identifier.full_name);
Ok(Expr::Var(Identifier::from_full_name(DECL_UNIT)))
} else {
if let Some(equation_var) = &context.equation_variable {
if &identifier.full_name == equation_var {
return Ok(build_var(context, &identifier.full_name));
}
}
if context.contains_equation_equal_sign {
context.equation_variable = Some(identifier.full_name.clone());
return Ok(build_var(context, &identifier.full_name));
}
if identifier.pure_name.len() == 1 {
return Ok(build_var(context, &identifier.full_name));
}
// Eg. dx inside an integral, should be parsed as *one* identifier
// Reverse the identifier and take two. This gets the last two characters (in reversed order).
// Now reverse this to finally get the last two characters in correct order.
// It's a bit weird, but it should work for more than ASCII.
let mut identifier_without_dx: Vec<char> = identifier.full_name.chars().collect();
let mut last_two_chars = String::new();
let last_char = identifier_without_dx.pop().unwrap_or_default();
let first_char = identifier_without_dx.pop().unwrap_or_default();
last_two_chars.push(first_char);
last_two_chars.push(last_char);
if context.is_in_integral && last_two_chars.starts_with("d") {
// If the token contains more than just "dx",
// save the dx/dy/du/etc. in a variable, that can be
// used further down when splitting the identifier into multiple variables.
if identifier.full_name.len() > 2 {
// This variable will be used further down in order to separate dx from the rest.
let pos = context.pos - 1;
context.pos = pos;
context.tokens[pos] = Token {
kind: TokenKind::Identifier,
value: identifier_without_dx.iter().collect(),
span: (0, 0),
};
let left_expr = parse_exponent(context)?;
// Revert back to how it was before.
context.tokens[pos] = Token {
kind: TokenKind::Identifier,
value: identifier.full_name.to_string(),
span: (0, 0),
};
return Ok(Expr::Binary(
Box::new(left_expr),
TokenKind::Star,
Box::new(Expr::Var(Identifier::from_full_name(&last_two_chars))),
));
} else {
return Ok(Expr::Var(Identifier::from_full_name(&last_two_chars)));
}
}
split_into_variables(context, &identifier)
}
}
fn split_into_variables(context: &mut Context, identifier: &Identifier) -> Result<Expr, CalcError> {
let mut chars: Vec<char> = identifier.pure_name.chars().collect();
let mut left = Expr::Var(Identifier::from_full_name(&chars[0].to_string()));
// Temporarily remove the last character and check if a function
// without that character exists. If it does,
// create a function call expression, where that last character
// is the argument.
let last_char = chars.pop().unwrap_or_default();
let identifier_without_last: String = chars.iter().collect();
if context.symbol_table.contains_fn(&identifier_without_last) {
return Ok(Expr::FnCall(
Identifier::from_full_name(&identifier_without_last),
vec![Expr::Var(Identifier::from_full_name(
&last_char.to_string(),
))],
));
} else {
// Otherwise, re-add the character.
chars.push(last_char);
}
// Turn each individual character into its own variable reference.
// This parses eg `xy` as `x*y` instead of *one* variable.
let mut right_chars = chars.iter().skip(1).peekable();
while let Some(c) = right_chars.next() {
// If last iteration
let right = if right_chars.peek().is_none() {
// Temporarily change the token content, so that
// the parse_exponent step will parse it as its
// new name. It will later be switched back,
// since the parser sometimes rewinds a bit,
// and may get confused by a sudden change.
let pos = context.pos - 1;
context.pos = pos;
context.tokens[pos] = Token {
kind: TokenKind::Identifier,
value: c.to_string(),
span: (0, 0),
};
let last_var = parse_exponent(context)?;
// Revert back to how it was before.
context.tokens[pos] = Token {
kind: TokenKind::Identifier,
value: identifier.full_name.to_string(),
span: (0, 0),
};
last_var
} else {
build_var(context, &c.to_string())
};
left = Expr::Binary(Box::new(left), TokenKind::Star, Box::new(right));
}
Ok(left)
}
fn build_var(context: &Context, name: &str) -> Expr {
if let (Some(function_name), Some(params)) = (
context.current_function.as_ref(),
context.current_function_parameters.as_ref(),
) {
let identifier = Identifier::parameter_from_name(name, &function_name);
if params.contains(&identifier.full_name) {
return Expr::Var(identifier);
}
}
return Expr::Var(Identifier::from_full_name(name));
}
fn peek(context: &Context) -> &Token {
&context.tokens[context.pos]
}
fn peek_next(context: &Context) -> &Token {
&context.tokens[context.pos + 1]
}
fn previous(context: &Context) -> &Token {
&context.tokens[context.pos - 1]
}
fn match_token(context: &Context, kind: TokenKind) -> bool {
if is_at_end(context) {
return false;
}
peek(context).kind == kind
}
fn advance(context: &mut Context) -> &Token {
context.pos += 1;
previous(context)
}
fn consume(context: &mut Context, kind: TokenKind) -> Result<&Token, CalcError> {
if match_token(context, kind) {
return Ok(advance(context));
}
Err(CalcError::UnexpectedToken(peek(context).kind, kind))
}
fn is_at_end(context: &Context) -> bool {
context.pos >= context.tokens.len() || peek(context).kind == TokenKind::EOF
}
fn string_to_num(value: &str) -> Result<f64, CalcError> {
if let Ok(result) = value.replace(" ", "").parse::<f64>() {
Ok(result)
} else {
Err(CalcError::InvalidNumberLiteral(value.into()))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::ast::Identifier;
use crate::lexer::{Token, TokenKind::*};
use crate::test_helpers::*;
use wasm_bindgen_test::*;
fn parse_with_context(context: &mut Context, tokens: Vec<Token>) -> Result<Stmt, CalcError> {
context.tokens = tokens;
context.pos = 0;
parse_stmt(context)
}
fn parse(tokens: Vec<Token>) -> Result<Stmt, CalcError> {
let mut context = Context::new();
context.tokens = tokens;
context.pos = 0;
parse_stmt(&mut context)
}
#[test]
#[wasm_bindgen_test]
fn test_var() {
// x
let tokens = vec![token(Identifier, "x"), token(EOF, "")];
assert_eq!(parse(tokens).unwrap(), Stmt::Expr(var("x")));
}
#[test]
#[wasm_bindgen_test]
fn test_var_multiplication() {
let mut context = Context::new();
context.symbol_table.insert(Stmt::VarDecl(
Identifier::from_full_name("x"),
literal(1f64),
));
context.symbol_table.insert(Stmt::VarDecl(
Identifier::from_full_name("y"),
literal(2f64),
));
// xy²
let tokens = vec![
token(Identifier, "xy"),
token(Power, ""),
token(Literal, "2"),
token(EOF, ""),
];
assert_eq!(
parse(tokens).unwrap(),
Stmt::Expr(binary(
var("x"),
Star,
binary(var("y"), Power, literal(2f64))
))
);
}
#[test]
#[wasm_bindgen_test]
fn test_binary() {
// 1+2*(3-4/5)
let tokens = vec![
token(Literal, "1"),
token(Plus, ""),
token(Literal, "2"),
token(Star, ""),
token(OpenParenthesis, ""),
token(Literal, "3"),
token(Minus, ""),
token(Literal, "4"),
token(Slash, ""),
token(Literal, "5"),
token(ClosedParenthesis, ""),
token(EOF, ""),
];
assert_eq!(
parse(tokens).unwrap(),
Stmt::Expr(binary(
literal(1f64),
Plus,
binary(
literal(2f64),
Star,
group(binary(
literal(3f64),
Minus,
binary(literal(4f64), Slash, literal(5f64))
))
)
))
);
}
#[test]
#[wasm_bindgen_test]
fn test_pow() {
let tokens = vec![
token(Literal, "1"),
token(Star, ""),
token(Literal, "2"),
token(Power, ""),
token(Literal, "3"),
token(Power, ""),
token(Literal, "4"),
token(Plus, ""),
token(Literal, "5"),
token(EOF, ""),
];
assert_eq!(
parse(tokens).unwrap(),
Stmt::Expr(binary(
binary(
literal(1f64),
Star,
binary(
literal(2f64),
Power,
binary(literal(3f64), Power, literal(4f64)),
),
),
Plus,
literal(5f64)
)),
);
}
#[test]
#[wasm_bindgen_test]
fn test_percent() {
let tokens = vec![
token(Literal, "1"),
token(Percent, ""),
token(Literal, "1"),
token(Plus, ""),
token(Literal, "5"),
token(Percent, ""),
token(EOF, ""),
];
assert_eq!(
parse(tokens).unwrap(),
Stmt::Expr(binary(
binary(literal(1f64), Percent, literal(1f64)),
Plus,
unary(Percent, literal(5f64))
))
);
}
#[test]
#[wasm_bindgen_test]
fn test_unit() {
let tokens = vec![token(Literal, "1"), token(Identifier, "a")];
let mut context = Context::new();
context
.symbol_table
.insert(unit_decl("a", "b", var(super::DECL_UNIT)));
assert_eq!(
parse_with_context(&mut context, tokens).unwrap(),
Stmt::Expr(unit("a", literal(1f64)))
);
}
#[test]
#[wasm_bindgen_test]
fn test_var_decl() {
let tokens = vec![
token(Identifier, "x"),
token(Equals, ""),
token(Literal, "1"),
token(Plus, ""),
token(Literal, "2"),
token(EOF, ""),
];
assert_eq!(
parse(tokens).unwrap(),
Stmt::VarDecl(
Identifier::from_full_name("x"),
binary(literal(1f64), Plus, literal(2f64))
)
);
}
#[test]
#[wasm_bindgen_test]
fn test_fn_decl() {
let tokens = vec![
token(Identifier, "f"),
token(OpenParenthesis, ""),
token(Identifier, "x"),
token(ClosedParenthesis, ""),
token(Equals, ""),
token(Literal, "1"),
token(Plus, ""),
token(Identifier, "x"),
token(EOF, ""),
];
assert_eq!(
parse(tokens).unwrap(),
Stmt::FnDecl(
Identifier::from_full_name("f"),
vec![String::from("f-x")],
binary(literal(1f64), Plus, param_var("f", "x"))
)
);
}
#[test]
#[wasm_bindgen_test]
fn test_fn_call() {
let tokens = vec![
token(Identifier, "f"),
token(OpenParenthesis, ""),
token(Literal, "1"),
token(Plus, ""),
token(Literal, "2"),
token(ClosedParenthesis, ""),
token(Plus, ""),
token(Literal, "3"),
token(EOF, ""),
];
let mut context = Context::new();
// Add the function to the symbol table first, in order to prevent errors.
context.symbol_table.set(Stmt::FnDecl(
Identifier::from_full_name("f"),
vec![String::from("x")],
literal(1f64),
));
assert_eq!(
parse_with_context(&mut context, tokens).unwrap(),
Stmt::Expr(binary(
Box::new(Expr::FnCall(
Identifier::from_full_name("f"),
vec![*binary(literal(1f64), Plus, literal(2f64))]
)),
Plus,
literal(3f64)
))
);
}
}